Alkene Polymerization Reactions with Transition Metal Catalysts, Volume 173

Alkene Polymerization Reactions with Transition Metal Catalysts, Volume 173 pdf epub mobi txt 电子书 下载 2026

出版者:
作者:Kissin, Yury
出品人:
页数:495
译者:
出版时间:2008-3
价格:1963.00元
装帧:
isbn号码:9780444532152
丛书系列:
图书标签:
  • 烯烃聚合
  • 过渡金属催化剂
  • 聚合反应
  • 催化化学
  • 高分子化学
  • 有机金属化学
  • 催化剂
  • 高分子材料
  • 化学工程
  • 材料科学
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

During the past 30 years, the field of alkene polymerization over transition metal catalysts underwent several major changes:

1. The list of commercial heterogeneous Ziegler-Natta catalysts for the synthesis of polyethylene and stereoregular polyolefins was completely renewed affording an unprecedented degree of control over the polymer structure.

2. Research devoted to metallocene and other soluble transition-metal catalysis has vastly expanded and has shifted toward complexes of transition metals with multidentate ligands.

3. Recent developments in gel permeation chromatography, temperature-rising fractionation, and crystallization fractionation provided the first reliable information about differences between various active centers in transition-metal catalysts.

4. A rapid development of high-resolution 13C NMR spectroscopy resulted in greatly expanded understanding of the chemical and steric features of polyolefins and alkene copolymers.

These developments require a new review of all aspects of alkene polymerization reactions with transition-metal catalysts. The first chapter in the book is an introductory text for researchers who are entering the field. It describes the basic principles of polymerization reactions with transition-metal catalysts, the types of catalysts, and commercially manufactured polyolefins.

The next chapter addresses the principal issue of alkene polymerization catalysis: the existence of catalyst systems with single and multiple types of active centers. The subsequent chapters are devoted to chemistry and stereochemistry of elemental reaction steps, structures of catalyst precursors and reactions leading to the formation of active centers, kinetics of polymerization reactions, and their mechanisms.

The book describes the latest commercial polymerization catalysts for the synthesis of polyethylenes and polypropylene

The book provides a detailed description of the multi-center nature of commercial Ziegler-Natta catalysts.

The book devotes specialized chapters to the most important aspects of transition metal polymerization catalysts: the reactions leading to the formation of active centers, the chemistry and stereochemistry of elemental polymerization steps, reaction kinetics, and the polymerization mechanism.

The book contains an introductory chapter for researchers who are entering the field of polymerization catalysis. It describes the basic principles of polymerization reactions with transition-metal catalysts and the types of commercially manufactured polyolefins and copolymers

The book contains over 2000 references, the most recent up to end of 2006.

《烯烃聚合反应与过渡金属催化剂:第一卷》 本书深入探讨了烯烃聚合反应的奥秘,并重点介绍了在这一领域发挥核心作用的过渡金属催化剂。作为该系列的开篇之作,本卷旨在为读者构建一个坚实的理论基础,涵盖烯烃聚合的基本原理、催化剂的设计理念、反应机理以及各类主流催化剂体系的特性。 核心内容概述: 1. 烯烃聚合基础理论: 聚合反应机理: 本部分将详细阐述不同类型的烯烃聚合机理,包括自由基聚合、离子聚合(阳离子聚合与阴离子聚合)以及最重要的——配位聚合。我们将深入解析这些机理的动力学过程、链增长、链转移和链终止等关键步骤。 单体结构与聚合活性: 探讨不同烯烃单体的结构特征(如乙烯、丙烯、丁烯等)如何影响其聚合活性、聚合物的微观结构(如头尾连接、支化程度)以及最终聚合物的性能。 聚合物微观结构与宏观性能: 建立单体结构、聚合条件和催化剂体系与所得聚合物微观结构(如立体规整度、分子量分布、共聚单体含量)之间的联系,并进一步阐述这些微观结构特征如何决定聚合物的宏观性能,如力学强度、热稳定性、溶解性、结晶度等。 2. 过渡金属催化剂在烯烃聚合中的应用: 催化剂的组成与结构: 详细介绍构成过渡金属催化剂的主要组分,包括金属中心(如Ti, Zr, Cr, Ni, Pd等)、配体(如茂金属、非茂金属配体)以及助催化剂(如烷基铝、硼酸盐)。我们将深入剖析这些组分如何影响催化剂的活性、选择性和稳定性。 催化剂设计原则: 阐述如何通过理性设计配体和金属中心来调控催化剂的催化性能。这包括空间位阻效应、电子效应、配体配位模式等对金属活性位点的影响,以及如何实现对聚合物分子量、分子量分布、单体序列分布和立体规整度的精确控制。 经典催化剂体系: Ziegler-Natta催化剂: 回顾Ziegler-Natta催化剂的历史发展、基本构成(如TiCl4/Al(i-Bu)3体系)以及其在聚烯烃工业中的重要地位。详细讲解其聚合机理,包括催化剂活化、单体插入、链增长等步骤。 茂金属催化剂: 重点介绍茂金属催化剂的结构特点(如Cp2ZrCl2)、催化机理(如单峰活性)以及其在生产高性能聚烯烃方面的巨大潜力。讨论不同茂金属催化剂(如Cp2TiCl2, Cp2ZrCl2, Ind2ZrCl2等)的催化性能差异,以及如何通过改变配体结构来实现对聚合物结构的精细调控。 后茂金属催化剂(非茂金属催化剂): 介绍近年来发展迅速的后茂金属催化剂,包括大位阻单齿配体、双齿配体(如α-二亚胺)、磷杂环配体等新型催化剂体系。阐述这些新型催化剂在合成特殊结构聚烯烃(如高长链支化聚乙烯、高度无规聚丙烯)方面的优势。 3. 反应机理的深入分析: 链增长机理: 详细阐述过渡金属催化剂中链增长的插入机制,包括单体与金属中心的配位、插入步骤以及影响插入速率的因素。 链转移机理: 讨论影响聚合物分子量和分子量分布的各种链转移过程,例如β-氢消除、氢转移、单体转移等。 催化剂失活机制: 分析导致催化剂活性降低或丧失的因素,如配体降解、金属中心氧化、杂质毒化等,并探讨提高催化剂稳定性的方法。 4. 聚合反应的控制与优化: 反应条件的影响: 探讨温度、压力、溶剂、单体浓度、催化剂浓度、助催化剂用量等反应条件如何影响聚合反应速率、聚合物分子量、分子量分布和微观结构。 共聚反应: 介绍烯烃与α-烯烃、极性单体等共聚的机理和催化剂设计,以及如何通过共聚来赋予聚合物新的性能。 本书将以清晰的逻辑、严谨的理论和丰富的实例,为化学、化工、材料科学等领域的学生、研究人员和工程师提供一个全面而深入的了解烯烃聚合反应与过渡金属催化剂的世界的平台。它不仅是理论学习的宝贵资源,也是探索新型催化剂和聚烯烃材料开发的重要参考。

作者简介

Yury Kissin (born in 1937) received his degree in Polymer Chemistry in 1965 at Institute of Chemical Physics in Moscow investigating α-olefin polymerization reactions with heterogeneous Ziegler-Natta catalysts. Since 1960 until 1977 he worked in Institute of Chemical Physics studying kinetics of polymerization reactions of ethylene, propylene and higher α-olefins and the structure of polyolefins and catalysts by IR. He immigrated to USA in 1979 and worked as Research Associate first at Gulf Research and Development Company in Pittsburgh, PA (1980-1985), at Edison Research Center of Mobil Chemical Company in NJ (1985-2000), and at Engelhard/BASF Research Center in Iselin, NJ (2004-2008). His main research subjects were synthesis of Ziegler-Natta catalysts, kinetics of polymerization and oligomerization reactions, and spectroscopic studies of polymerization catalysts. Since 2000 he is a Visiting Scientist at Department of Chemistry of Rutgers University, NJ, where he studies kinetics of olefin polymerization reactions with Ziegler-Natta and late-period transition metal catalysts. He authored three books (Isospecific Polymerization of Olefins, Springer, 1985; Polymers and Copolymers of Higher α-Olefins, Hanser, 1997; Alkene Polymerization Reactions with Transition Metal Catalysts, Elsevier, 2008), twenty articles in chemical and polymer encyclopedias, ~210 scientific articles, and over 60 patents in the fields of synthesis of Ziegler-Natta and metallocene catalysts.

目录信息

Chapter 1. The beginner¡¦s course. General description of transition metal catalysts and catalytic polymerization reactions
1.1. Classifications of transition metal catalysts
1.1.1. Components of transition metal catalysts
1.1.2. Catalyst classification based on solubility
1.2. Composition and structure Ziegler-Natta catalysts
1.2.1. Organoaluminum cocatalysts
1.2.2. Transition metal catalyst components of Ziegler-Natta catalysts
1.2.3. Examples of Ziegler-Natta catalysts
1.2.3.1. Early and modern Ziegler-Natta catalysts
1.2.3.2. Examples of catalysts for polymerization of ethylene and for copolymerization of ethylene with higher 1-alkenes
1.2.3.3. Examples of catalysts for polymerization of propylene and higher alkenes
1.2.3.4. Catalysts for copolymerization of ethylene and propylene
1.3. Metallocene catalysts
1.4. Homogeneous catalysts containing non-metallocene complexes of early- and late-period transition metals
1.5. Chromium oxide catalysts
1.6. Main features of alkene polymerization reactions
1.6.1. Basic principles of polymerization kinetics
1.6.2. Copolymerization reactions of alkenes
1.6.3. Auto-copolymerization reactions and formation of polymer chains with long-chain branches
1.6.4. Oligomerization reactions
1.6.5. Stereospecific alkene polymerization and stereoregular polyolefins
1.6.6. Nonuniformity of active centers in transition metal catalysts
1.7. Classes of polymers produced with transition metal catalysts
1.7.1. Linear polyethylene and semi-crystalline ethylene copolymers
1.7.1.1. Catalysts and technologies of manufacture of polyethylene resins
1.7.1.2. Control of polyethylene properties and its commercial uses
1.7.2. Ethylene/propylene elastomers
1.7.3. Poly(olefins)
1.7.3.1. Propylene polymers and copolymers
1.7.3.2. Commercial polymers of higher 1-alkenes
1.7.3.3. Poly(cycloalkenes) and cycloalkene copolymers
1.7.3.4. Syndiotactic polystyrene
Chapter 2. Single-center and multi-center polymerization catalysis
2.1. Definition of a single type of active center
2.2. Molecular weight distribution of polymers produced with single-center catalysts
2.2.1. Molecular weight distribution, theory
2.2.2. Experimental techniques for the analysis of molecular weight distribution, gel permeation chromatography
2.2.3. Experimental techniques for the measurement of molecular weight distribution used in industry
2.2.4. Experimental techniques for the analysis of molecular weight distribution, gas chromatography
2.3. Structural uniformity of polymers and copolymers produced with single-center catalysts
2.3.1. Structural uniformity of polymers and copolymers, theory
2.3.2. Experimental techniques for the analysis of steric structure of alkene homopolymers and compositional distribution of copolymers
2.3.2.1. Early fractionation methods
2.3.2.2. Preparative fractionation methods
2.3.2.3. Automated methods, analytical Tref and Crystaf methods
2.3.2.4. Melting point measurement, differential scanning calorimetry
2.4. Examples of polymers and copolymers produced with single-center catalysts
2.4.1. Molecular weight distribution of polymers and produced with single-center catalysts
2.4.2. Structural uniformity of alkene polymers produced with single-center catalysts
2.5. Examples of polymers and copolymers produced with multi-center catalysts
2.5.1. Molecular weight distribution of polymers produced with multi-center catalysts
2.5.1.1. Heterogeneous Ziegler-Natta catalysts
2.5.1.2. Metallocene catalysts
2.5.1.3. Non-metallocene homogeneous catalysts
2.5.1.4. Chromium-based and multi-component catalysts
2.5.2. Steric structure of alkene homopolymers, different definitions of stereoregularity
2.5.3. Steric structure of alkene homopolymers produced with multi-center catalysts
2.5.4. Compositional distribution of copolymers produced with multi-center catalysts
Chapter 3. Chemistry and stereochemistry of polymerization and copolymerization reactions with transition metal catalysts
3.1. Chemistry and stereochemistry of polymerization reactions
3.1.1. Definition of regioselectivity
3.1.2. Stereospecificity in alkene polymerization reactions
3.1.3. Statistics of predominantly stereoregular polymers
3.1.3.1. Isospecific catalysis, site-control (enantiomorphic) mechanism
3.1.3.2. Isospecific catalysis, chain-end stereocontrol mechanism
3.1.3.3. Syndiospecific catalysis, site-control (enantiomorphic) mechanisms
3.1.3.4. Syndiospecific catalysis, chain-end stereocontrol mechanism
3.1.3.5. Mixed statistical schemes in stereospecific polymerization reactions
3.2. Heterogeneous titanium- and vanadium-based Ziegler-Natta catalysts
3.2.1. Chemistry of chain initiation, propagation, and transfer reactions
3.2.1.1. Chain growth reactions
3.2.1.1.1. Standard chain growth reactions
3.2.1.1.2. Unconventional chain growth reactions
3.2.1.2. Chain transfer and chain initiation reactions
3.2.1.2.1. Chain transfer reactions after primary insertion of the last monomer unit and the following chain initiation reactions
3.2.1.2.2. ¡§Initial¡¨ chain initiation reactions
3.2.1.2.3. Chain transfer reactions after secondary insertion of the last monomer unit and the following chain initiation reactions
3.2.2. Reactivities of alkenes in polymerization reactions
3.2.2.1. Reactivities of alkenes in chain growth reactions
3.2.2.2. Reactivities of alkenes in chain initiation reactions
3.2.3. Stereospecificity of titanium-based polymerization catalysts
3.2.3.1. Two alternative models of predominantly isotactic polymer chains
3.2.3.2. Stereospecificity in chain growth reactions
3.2.3.3. Stereochemistry of chain initiation reactions
3.3. Metallocene catalysts
3.3.1. Chemistry of chain initiation, propagation, and transfer reactions
3.3.1.1. Chain growth reactions
3.3.1.1.1. Standard chain growth reactions
3.3.1.1.2. Chain insertion/isomerization reactions
3.3.1.1.3. Chain insertion reactions in polymerization of ƒÑƒzƒç-dienes
3.3.1.2. Chain transfer and chain initiation reactions
3.3.1.2.1. Chain transfer reactions after primary insertion of the last monomer unit and the following chain initiation reactions
3.3.1.2.2. ¡§Initial¡¨ chain initiation reactions
3.3.1.2.3. Chain transfer after secondary insertion of the last monomer unit and the following chain initiation reactions
3.3.1.2.4. Generation of molecular hydrogen by metallocene catalysts
3.3.2. Stereochemistry of chain growth reactions
3.3.2.1. Catalysts based on nonbridged bis-metallocene and monometallocene complexes
3.3.2.2. Isospecific catalysts based on bridged bis-metallocene complexes
3.3.2.2.1. Bis-metallocene complexes of C2 symmetry
3.3.2.2.2. Asymmetric bis-metallocene complexes
3.3.2.3. Syndiospecific catalysts based on bridged bis-metallocene complexes
3.3.2.4. Hemi-isospecific metallocene catalysts
3.3.3. Polymerization and copolymerization reactions of styrene
3.4. Homogeneous catalysts based on early-period transition metals
3.4.1. Complexes with monodentate ligands
3.4.2. Complexes with bidentate, tridentate, and tetradentate ligands
3.4.3. Chain insertion reactions in polymerization of alkenes with internal double bonds
3.4.4. Styrene polymerization and copolymerization reactions
3.5. Homogeneous catalysts based on late-period transition metals
3.5.1. Regiochemistry of chain initiation and chain growth reactions
3.5.2. Stereochemistry of chain growth reactions
3.5.3. Chain-isomerization reactions
3.6. Chromium-based catalysts
3.6.1. Chromium oxide catalysts
3.6.2. Organochromium catalysts
3.7. Stereoselective and stereoelective polymerization reactions of branched 1-alkenes
3.7.1. Stereoselective polymerization reactions with Ziegler-Natta catalysts
3.7.2. Stereoelective polymerization reactions with Ziegler-Natta and metallocene catalysts
3.8. Copolymerization reactions of alkenes
3.8.1. Copolymerization reactions, reactivity ratios for various alkene pairs
3.8.2. Statistical description of copolymer structure in terms of block length
3.8.3. Statistical description of copolymer structure suitable for NMR analysis
3.8.4. Auto-copolymerization reactions and long chain branching in alkene polymers
Chapter 4. Synthesis, chemical composition, and structure of transition metal catalysts for alkene polymerization
4.1. Early solid Ziegler-Natta catalysts
4.2. Supported Ziegler-Natta catalysts for homopolymerization and copolymerization of ethylene
4.2.1. Titanium-based Ziegler-Natta catalysts
4.2.1.1. General features of catalysts for ethylene/1-alkene copolymerization
4.2.1.2. Catalysts produced from soluble MgCl2 complexes
4.2.1.3. Catalysts produced by synthesis of MgCl2
4.2.1.4. Specialized Ti-based catalysts for ethylene polymerization
4.2.1.5. Pseudo-homogeneous Ti-based catalysts for ethylene polymerization
4.2.2. Vanadium-based Ziegler-Natta catalysts
4.2.3. Chromium-based catalysts
4.2.3.1. Chromium oxide catalysts
4.2.3.2. Supported organochromium catalysts
4.3. Supported Ziegler-Natta catalysts for polymerization of propylene and higher 1-alkenes
4.3.1. Catalysts based on ƒÔ-TiCl3
4.3.2. Catalysts supported on MgCl2
4.3.2.1. Catalysts produced by milling MgCl2
4.3.2.2. Catalysts produced from soluble MgCl2 complexes
4.3.2.3. Catalysts produced by synthesis of MgCl2
4.3.2.4. Effects of Modifiers I and II on catalyst performance
4.3.2.5. Catalysts for synthesis of atactic polypropylene
4.4. Chemical composition of solid components and cocatalyst mixtures of Ti-based Ziegler-Natta catalysts
4.4.1. Supported TiCl4/MgCl2 catalysts, catalyst models
4.4.2. Supported TiCl4/MgCl2 catalysts, structure of solid components
4.4.2.1. Structure of MgCl2 support
4.4.2.2. Esters in catalysts
4.4.2.3. Ti species in catalysts
4.4.3. Cocatalyst compositions, reactions of AlR3 and Modifiers II
4.4.3.1. Reactions of AlR3 and esters of aromatic acids
4.4.3.2. Reactions of AlR3 with alkoxysilanes and diethers
4.5. Reactions leading to formation of active centers in Ziegler-Natta catalysts
4.5.1. Early catalyst compositions, reactions between MCl3 and AlR3
4.5.2. Supported catalyst compositions, reactions between catalysts and cocatalysts
4.5.2.1. Reactions in model catalyst systems
4.5.2.2. Reactions between cocatalysts and Modifiers I
4.5.2.3. Complexes of MgCl2 and solid catalysts with silanes
4.5.2.4. Valence state of titanium atoms
4.5.2.5. Aluminum species in solid catalysts
4.5.2.6. Reactions in vanadium-based catalysts
4.6. Metallocene catalysts
4.6.1. Types of metallocene complexes used in polymerization catalysts
4.6.2. Cocatalysts for metallocene complexes
4.6.1.1. Cocatalysts in early metallocene catalysts
4.6.2.2. Alkylalumoxanes
4.6.2.3. Analogs of alkylalumoxanes
4.6.2.4. Ion-forming cocatalysts
4.6.3. Activity of metallocene catalysts
4.6.4. Stereospecific metallocene catalysts
4.6.5. Reactions leading to active centers in metallocene catalysts
4.7. Non-metallocene homogeneous catalysts
4.7.1. Complexes of early-period transition metals
4.7.1.1. Complexes with monodentate ligands
4.7.1.2. Complexes with bidentate ligands
4.7.1.3. Complexes with tetradentate ligands
4.7.2. Complexes of late-period transition metals
4.7.2.1. Complexes with bidentate ligands
4.7.2.2. Complexes with tridentate ligands
4.8. Supported homogeneous catalysts
4.9. Bicomponent catalysts
4.9.1. Catalysts for polymers with a broad molecular weight distribution
4.9.2. Catalysts for synthesis of block-copolymers and branched polymers
4.9.3. Binary Ziegler-Natta/metallocene systems
4.10. Catalysts for stereospecific polymerization of styrenes
4.10.1. Isospecific catalysts
4.10.2. Syndiospecific catalysts
Chapter 5. Kinetics of alkene polymerization reactions with transition metal catalysts
5.1. Two aspects of polymerization kinetics
5.2. Role of diffusion in alkene polymerization reactions
5.3. Formal kinetic description of alkene polymerization reactions with transition metal catalysts
5.3.1. Homopolymerization reactions
5.3.2. Copolymerization reactions
5.3.3. Stopped-flow kinetic method and living-chain polymerization reactions
5.4. Polymerization reactions with metallocene catalysts
5.4.1. General kinetic behavior
5.4.2. Detailed kinetic studies
5.4.2.1. Ethylene polymerization reactions
5.4.2.2. Propylene polymerization reactions
5.4.2.3. Polymerization reactions of higher 1-alkenes and styrenes
5.4.3. General kinetic studies, effects of reaction parameters
5.4.3.1. Polymerization reactions with ionic metallocene catalysts
5.4.3.2. Polymerization reactions with MAO-activated metallocene catalysts
5.4.3.2.1. Acceleration period
5.4.3.2.2. Stationary period, effects of reaction parameters
5.4.3.2.3. Catalyst deactivation
5.4.3.2.4. Poisoning of active centers in metallocene catalysts
5.4.3.2.5. Number of active centers in metallocene catalysts
5.5. Polymerization reactions with non-metallocene homogeneous catalysts
5.5.1. Living-chain polymerization reactions
5.5.2. Kinetics of oligomerization reactions
5.5.3. Limiting kinetic steps in polymerization reactions
5.5.4. Single- vs. multi-center polymerization catalysis
5.6. Synthesis of alkene block-copolymers
5.6.1. Living-chain polymerization reactions and synthesis of alkene block-copolymers
5.6.2. Synthesis of alkene block-copolymers using chain transfer agents
5.7. Polymerization reactions with solid and supported Ziegler-Natta catalysts
5.7.1. Ethylene polymerization reactions
5.7.1.1. Ethylene homopolymerization reactions
5.7.1.1.1. General kinetic behavior
5.7.1.1.2. Effects of reaction parameters
5.7.1.2. Ethylene/1-alkene copolymerization reactions
5.7.1.3. General kinetic scheme of ethylene polymerization reactions
5.7.2. Propylene polymerization reactions
5.7.2.1. General kinetic behavior
5.7.2.2. Effects of reaction parameters
5.7.2.3. Catalyst modifiers, selective poisoning of active centers
5.7.2.4. Nonselective catalyst poisons
5.7.2.5. Other kinetic features of propylene polymerization reactions
5.7.2.6. Comparison of ethylene and propylene copolymerization kinetics
5.7.3. Polymerization reactions of higher 1-alkenes and styrene
5.7.4. Estimation of number of active centers in Ziegler-Natta catalysts
5.7.4.1. Kinetic approaches to estimation of number of active centers
5.7.4.2. Poisoning of active centers and estimation of their number
5.7.4.2.1. CO and CO2 as poisons, step-poisoning experiments
5.7.4.2.2. CO and CO2 as poisons, 14C-labeling
5.7.4.2.3. Allene and CS2 as poisons
5.7.4.2.4. Destructive poisons, alcohols
5.7.4.2.5. Destructive poisons, acid chlorides
5.7.4.2.6. Other C
measurement methods
5.7.5. General classification of active centers in heterogeneous Ziegler-Natta catalysts
5.7.6. Physical effects in polymerization reactions with heterogeneous Ziegler-Natta catalysts
5.8. Polymerization reactions with pseudo-homogeneous catalysts
5.9. Polymerization reactions with chromium oxide catalysts
5.9.1. General kinetic behavior
5.9.2. Effects of reaction parameters
Chapter 6. Active centers in transition metal catalysts and mechanisms of polymerization reactions
6.1. Catalysts derived from metallocene complexes
6.1.1. Formation and structure of active centers
6.1.1.1. Catalysts utilizing ion-forming cocatalysts
6.1.1.2. Catalysts derived from constrained-geometry complexes
6.1.1.3. Early metallocene catalysts
6.1.1.4. Metallocene catalysts utilizing MAO as a cocatalyst
6.1.1.5. Chemistry and mechanism of catalyst deactivation reactions
6.1.2. Mechanism of alkene polymerization reactions, experimental data and theoretical analysis
6.1.2.1. Mechanism of normal chain growth and chain transfer
6.1.2.1.1. The C=C bond coordination stage
6.1.2.1.2. The C=C bond insertion step in model systems
6.1.2.1.3. C=C bond insertion reactions in metallocenium ions
6.1.2.1.4. The C=C bond insertion step into the [Cp]Zr+ƒ{H bond
6.1.2.1.5. Theoretical analysis of C=C bond insertion steps
6.1.2.1.6. Mechanism of chain transfer reactions
6.1.2.1.7. Agostic interactions in active centers
6.1.2.1.8. Poisoning of active centers in metallocene catalysts
6.1.2.2. Mechanisms of chain isomerization
6.1.3. Stereospecificity of active centers in metallocene catalysts
6.1.3.1. Non-bridged metallocene complexes.
6.1.3.2. Isospecific bridged metallocene complexes
6.1.3.2.1. Active centers derived from complexes of C2 symmetry
6.1.3.2.2. Centers of C2 symmetry, mechanism of isospecific chain growth
6.1.3.2.3. Centers of C2 symmetry, mechanisms of steric errors
6.1.3.2.4. Active centers derived from complexes of C1 symmetry
6.1.3.2.5. Centers of C1 symmetry, mechanism of isospecific chain growth
6.1.3.3. Syndiospecific bridged metallocene complexes
6.1.3.3.1. Centers of C2 symmetry, mechanism of syndiospecific chain growth
6.1.3.3.2. Centers of Cs symmetry, mechanism of steric errors
6.1.3.3.3. Centers of C1 symmetry, mechanism of syndiospecific chain growth
6.1.4. Mechanism of styrene polymerization
6.2. Non-metallocene homogeneous catalysts
6.2.1. Vanadium-based catalysts
6.2.2. Ni ylide catalysts for ethylene oligomerization
6.2.3. Catalysts derived from complexes with (imino)pyridyl ligands
6.2.4. Catalysts derived from complexes with Ą-diimine ligands
6.2.4.1. Chain growth mechanism
6.2.4.2. Chain isomerization mechanism
6.3. Active enters in heterogeneous Ziegler-Natta catalysts
6.3.1. Formation of active centers
6.3.2. Structural features of active centers
6.3.3. Poisoning of active centers
6.3.4. Physical observations, position of active centers on catalyst surface
6.3.5. Mechanism of alkene polymerization reactions with Ziegler-Natta catalysts
6.3.5.1. Experimental data
6.3.5.2. Models of active centers, theoretical analysis
6.3.6. Stereospecificity of active centers
6.3.6.1. Experimental data
6.3.6.2. Models of isospecific centers, theoretical results
6.4. Chemical nature of active enters in chromium oxide catalysts
6.4.1. Formation and structure of active centers
6.4.2. Mechanism of alkene polymerization
6.4.2.1. Experimental data
6.4.2.2. Theoretical results
· · · · · · (收起)

读后感

评分

评分

评分

评分

评分

用户评价

评分

如果用一个词来形容阅读这本书的感受,那一定是**“深度与广度并存”**。这本书的“深度”体现在对**量子化学计算结果**在预测催化剂性能上的应用。作者不仅仅是引用计算结果,而是详细阐述了**密度泛函理论(DFT)**是如何被用来计算催化循环中关键步骤的能垒,从而量化不同配体替换对反应活性的影响。这种方法论的展示,极大地拓宽了我们对催化剂设计范式的理解,从依赖经验试错转向基于第一性原理的理性设计。而其“广度”则体现在对**不同金属系列(从早期过渡金属到贵金属)**的聚合催化潜力的全面覆盖,即便是相对冷门的**稀土金属催化体系**,书中也给予了充分的篇幅来讨论其独特的链转移机制和聚合物性能特征。这种包罗万象的覆盖面,使得本书能够作为一本**综合性的参考手册**,在不同领域的化学家和工程师之间架起沟通的桥梁,确保读者在处理特定聚合问题时,能够迅速找到跨体系的解决方案和思路启发。

评分

刚翻开这本关于过渡金属催化的烯烃聚合反应的著作,立刻被其深厚的学术底蕴和严谨的逻辑结构所吸引。书中对不同类型过渡金属催化剂的**电子结构、空间构型**及其对聚合反应活性和产物微观结构调控机制的探讨,展现出作者对催化化学前沿的深刻洞察。特别是对**茂金属和非茂金属催化体系**在烯烃聚合过程中的**链增长、链转移和链终止**动力学参数的精细分析,让人仿佛置身于高精度的实验数据面前,理解了为什么特定的配体设计能催化出具有特定分子量分布和立构规整性的聚合物。书中穿插的示意图和反应机理的图示清晰明了,即便对于初涉此领域的读者,也能逐步构建起对复杂催化循环的直观认识。作者在论述中并没有止步于现象的描述,而是深入挖掘了**过渡态理论在解释催化选择性**中的应用,这种理论与实践相结合的叙述方式,极大地提升了本书的学术价值,使其不仅仅是一本工具书,更是一部启发深入思考的学术专著。其对**位阻效应和电子效应**如何共同影响催化中心活性位点几何构象的论述尤其精彩,为设计下一代高效、高选择性聚合催化剂提供了坚实的理论基础。

评分

坦白说,这本书的阅读体验是**充满挑战但收获巨大的**,它要求读者具备较高的化学基础,特别是对有机金属化学和高分子动力学有扎实的了解。对于那些试图通过这本书快速了解聚合反应“是什么”的人来说,可能会感到吃力,因为它更专注于解释“为什么会这样”以及“如何做得更好”。书中关于**受控/活性聚合(CRP)在烯烃体系中的实现**的讨论,是本书的一大亮点,它超越了传统自由基聚合的范畴,探讨了如何利用特定的金属络合物来实现**精确的分子量控制和拓扑结构设计**。这种对“可控性”的极致追求,体现了现代聚合化学的发展方向。书中对**新型单体和催化剂的兼容性研究**的深入剖析,特别是对**非对称催化聚合**领域的前沿探索,为读者指明了未来数年内值得投入精力攻关的研究方向。这本书无疑是为高水平的研究人员和研究生量身打造的,它推动的不是知识的普及,而是学科边界的拓宽。

评分

这本书的编排方式,说实话,非常适合那些已经有一定高分子化学基础,渴望进入**工业应用和前沿研究交叉领域**的读者。它没有过多地纠缠于基础的化学键理论,而是直接切入**实际催化剂的制备、表征及其在工业反应器中的行为模拟**。我特别欣赏其中关于**“活性中心老化”和“催化剂失活路径”**的章节,这部分内容在许多教科书中往往被一笔带过,但对于追求稳定、长周期运行的工业生产而言,却是至关重要的。作者详细列举了热力学失活、氧化失活和催化剂聚集等多种失活机制,并辅以**谱学技术(如XPS、固体核磁)**在诊断这些失活过程中的应用案例,这种实战化的内容对于科研人员具有极高的参考价值。此外,书中对于**新型共聚体系**,例如烯烃与极性单体的**催化共聚挑战**的讨论,也体现了作者紧跟时代步伐的视野,揭示了如何通过精细的配体调控来克服传统催化剂对极性官能团的敏感性,这无疑是未来高功能性聚合物开发的关键突破点之一。

评分

这本书的语言风格极为**克制和精准**,没有过多花哨的修饰词,每一个句子都似乎是为了承载特定的科学信息而存在。它更像是一份经过严格同行评审的、高度浓缩的科学报告合集,而非轻松的阅读材料。对于像我这样追求**机制细节**的读者来说,这种风格是极其友好的。尤其是在阐述**“活性位点异构性”**对聚合物微观结构影响的那几章,作者通过对不同催化剂批次之间NMR谱图的对比分析,清晰地描绘出**多重活性中心共存**的复杂现象。书中对**聚合反应的实时监测技术**,比如原位傅里叶变换红外光谱(In-situ FTIR)在跟踪催化剂转化和聚合物生长方面的应用案例分析,让人感到技术的前沿性。这些详实的数据和图表,帮助读者辨识出那些隐藏在宏观性能之下的微观反应细节,为解决复杂的聚合物性能偏差问题提供了强有力的诊断工具,体现了极高的科学严谨性。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有