计算理论导引(英文版·第3版)

计算理论导引(英文版·第3版) pdf epub mobi txt 电子书 下载 2025

出版者:机械工业出版社
作者:[美] 迈克尔·西普塞 (Michael Sipser)
出品人:
页数:476
译者:
出版时间:2018-7-1
价格:89.00元
装帧:平装
isbn号码:9787111602057
丛书系列:经典原版书库
图书标签:
  • 计算理论
  • 计算机科学
  • 计算机
  • 算法
  • 知识-专业
  • 大学计算机
  • TCS
  • 计算理论
  • 自动机
  • 形式语言
  • 可计算性
  • 复杂度理论
  • 图灵机
  • 算法
  • 计算模型
  • 乔姆斯基层次
  • NP完全性
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

本书由计算理论领域的知名权威Michael Sipser所撰写。他以独特的视角,系统地介绍了计算理论的三个主要内容:自动机与语言、可计算性理论和计算复杂性理论。绝大部分内容是基本的,同时对可计算性和计算复杂性理论中的某些高级内容进行了重点介绍。作者以清新的笔触、生动的语言给出了宽泛的数学原理,而没有拘泥于某些低层次的细节。在证明之前,均有“证明思路”,帮助读者理解数学形式下蕴涵的概念。同样,对于算法描述,均以直观的文字而非伪代码给出,从而将注意力集中于算法本身,而不是某些模型。新版根据多年来使用本书的教师和学生的建议进行了改进,并用一节的篇幅对确定型上下文无关语言进行了直观而不失严谨的介绍。此外,对练习和问题进行了全面更新,每章末均有习题选答。

作者简介

迈克尔·西普塞(Michael Sipser) 美国麻省理工学院数学系教授,计算机科学和人工智能实验室(CSAIL)成员。2004~2014年任数学系主任,2014年起任理学院院长。他痴迷于复杂性理论,目前从事理论计算机科学与其他数学课程的教学工作已超过30年。

目录信息

PrefacetotheFirstEdition.........................iv
To the student...........................iv
To the educator..........................v
The frst edition..........................vi
Feedback to the author......................vi
Acknowledgments.........................vii
Preface to the Second Edition.........................ix
Preface to the Third Edition.........................xi
0 Introduction.........................1
0.1 Automata, Computability, and Complexity.............1
Complexity theory.........................2
Computability theory.......................3
Automata theory..........................3
0.2 Mathematical Notions and Terminology..............3
Sets.................................3
Sequences and tuples.......................6
Functions and relations......................7
Graphs...............................10
Strings and languages.......................13
Boolean logic............................14
Summary of mathematical terms.................16
0.3 Defnitions, Theorems, and Proofs.................17
Finding proofs...........................17
0.4 Typesof Proof............................21
Proof by construction.......................21
Proof by contradiction.......................21
Proof by induction.........................22
Exercises, Problems, and Solutions...................25
PartOne: AutomataandLanguages...................29
1 RegularLanguages...................31
1.1 Finite Automata...........................31
Formal defnition of afnite automaton.............35
Examples of fnite automata....................37
Formal defnition of computation................40
Designing fnite automata.....................41
The regular operations......................44
1.2 Nondeterminism...........................47
Formal defnition of a nondeterministic fnite automaton....53
Equivalence of NFAs and DFAs.................54
Closure under the regular operations...............58
1.3 Regular Expressions.........................63
Formal defnition of a regular expression............64
Equivalence with fnite automata.................66
1.4 Nonregular Languages........................77
The pumping lemma for regular languages...........77
Exercises, Problems, and Solutions...................83
2 Context-Free Languages...................101
2.1 Context-Free Grammars.......................102
Formal defnition of acontext-free grammar..........104
Examples of context-free grammars...............105
Designing context-free grammars................106
Ambiguity.............................107
Chomsky normal form......................108
2.2 Pushdown Automata.........................111
Formal defnition of a pushdown automaton...........113
Example of pushdow automata.................114
Equivalence with context-free grammars.............117
2.3Non-Context-Free Languages....................125
The pumping lemma for context-free languages.........125
2.4 Deterministic Context-Free Languages...............130
Properties of DCFLs.......................133
Deterministic context-free grammars..............135
Relationship of DPDAs and DCFGs...............146
Parsing and LR(k) grammars...................151
Exercises, Problems, and Solutions...................154
PartTwo: Computability Theory...................163
3 The Church–Turing Thesis...................165
3.1 Turing Machines...........................165
Formal defnition of a Turing machine..............167
Examples of Turing machines...................170
3.2 Variants of Turing Machines.....................176
Multitape Turing machines....................176
Nondeterministic Turing machines................178
Enumerators............................180
Equivalence with other models..................181
3.3 The Defnition of Algorithm....................182
Hilbert’s problems.........................182
Terminology for describing Turing machines..........184
Exercises, Problems, and Solutions...................187
4 Decidability...................193
4.1 Decidable Languages.........................194
Decidable problems concerning regular languages.......194
Decidable problems concerning context-free languages.....198
4.2 Undecidability............................201
The diagonalization method...................202
An undecidable language.....................207
A Turing-unrecognizable language................209
Exercises, Problems, and Solutions...................210
5 Reducibility...................215
5.1 Undecidable Problems from Language Theory..........216
Reductions via computation histories...............220
5.2 A Simple Undecidable Problem...................227
5.3 Mapping Reducibility........................234
Computable functions.......................234
Formal defnition of mapping reducibility............235
Exercises, Problems, and Solutions...................239
6 Advanced Topicsin Computability Theory...................245
6.1 The Recursion Theorem.......................245
Self-reference...........................246
Terminology for the recursion theorem.............249
Applications............................250
6.2 Decidability of logical theories...................252
A decidable theory.........................255
An undecidable theory.......................257
6.3 Turing Reducibility..........................260
6.4 A Defnition of Information.....................261
Minimal length descriptions...................262
Optimality of the defnition....................266
Incompressible strings and randomness.............267
Exercises, Problems, and Solutions...................270
Part Three: Complexity Theory...................273
7 Time Complexity...................275
7.1 Measuring Complexity........................275
Big-O and small-o notation....................276
Analyzing algorithms.......................279
Complexity relationships among models.............282
7.2 The Class P..............................284
Polynomial time..........................284
Examples of problems in P....................286
7.3 The Class NP.............................292
Examples of problemsin NP...................295
The Pversus NP question....................297
7.4 NP-completeness...........................299
Polynomial time reducibility...................300
Defnition of NP-completeness..................304
The Cook–Levin Theorem....................304
7.5 Additional NP-complete Problems.................311
The vertex cover problem.....................312
The Hamiltonian path problem.................314
The subset sum problem.....................319
Exercises, Problems, and Solutions...................322
8 Space Complexity...................331
8.1 Savitch’s Theorem..........................333
8.2 The Class PSPACE.........................336
8.3 PSPACE-completeness.......................337
The TQBF problem........................338
Winning strategies for games...................341
Generalized geography......................343
8.4 The Classes L and NL........................348
8.5 NL-completeness..........................351
Searching in graphs........................353
8.6 NL equals coNL...........................354
Exercises, Problems, and Solutions...................357
9 Intractability...................363
9.1 Hierarchy Theorems.........................364
Exponential space completeness.................371
9.2 Relativization.............................376
Limits of the diagonalization method..............377
9.3 Circuit Complexity..........................379
Exercises, Problems, and Solutions...................38
10 Advanced Topicsin Complexity Theory...................393
10.1 Approximation Algorithms.....................393
10.2 Probabilistic Algorithms.......................396
The class BPP...........................396
Primality..............................399
Read-once branching programs..................404
10.3 Alternation..............................408
Alternating time and space....................410
The Polynomial time hierarchy..................414
10.4 Interactive Proof Systems......................415
Graph nonisomorphism......................415
Defnition of the model......................416
IP=PSPACE...........................418
10.5 Parallel Computation........................427
Uniform Boolean circuits.....................428
The class NC...........................430
P-completeness..........................432
10.6 Cryptography.............................433
Secret keys.............................433
Public-key cryptosystems.....................435
One-way functions.........................435
Trapdoor functions........................437
Exercises, Problems, and Solutions...................439
Selected Bibliography...................443
Index...................448
· · · · · · (收起)

读后感

评分

我觉得作者很可爱,他同很多人一样很喜欢把一个复杂的问题说的很简单很通俗。 对于这本书来说,看了第一章,就应当一成的收获。计算机中重要的数学概念被解构的如此清楚,非常的难得。 另外,要说一下,翻译的问题。翻译的很不错(话说本来英文版就很上口),但是却是看原版会...  

评分

让人了解计算机的本质,它的能力与它的局限性。 计算理论课的教材,上课上的很累,但很有收获。我觉得没读过这本书的不好意思说自己是Computer Science专业毕业的。  

评分

让人了解计算机的本质,它的能力与它的局限性。 计算理论课的教材,上课上的很累,但很有收获。我觉得没读过这本书的不好意思说自己是Computer Science专业毕业的。  

评分

我觉得作者很可爱,他同很多人一样很喜欢把一个复杂的问题说的很简单很通俗。 对于这本书来说,看了第一章,就应当一成的收获。计算机中重要的数学概念被解构的如此清楚,非常的难得。 另外,要说一下,翻译的问题。翻译的很不错(话说本来英文版就很上口),但是却是看原版会...  

评分

在所有我看过的计算理论、可计算性、计算复杂度的教材中,Sipser的这本Introduction to the Theory of Computation是最适合入门的。把计算理论这么个艰深的学问讲解得清晰简洁,直观易懂。而且涵盖了计算理论的各个经典内容。作为一本introduction,真是再好不过了。 计算理论...  

用户评价

评分

没有想象中的好,挺啰嗦的,而且有些地方讲得不清不楚,不过图灵机的概念和P和NP问题懂了些,不过似懂非懂,觉得讲得不是很清楚。本来以为能好好讲讲计算复杂度,没想到都只是讲了些概念。如果想找大O的内容,不妨看看孙智伟翻译的silverman的数论概论的第40章,讲得比较简单清楚。

评分

译者和原作表达上没有很大的区别,都很抽象。

评分

译者和原作表达上没有很大的区别,都很抽象。

评分

没有想象中的好,挺啰嗦的,而且有些地方讲得不清不楚,不过图灵机的概念和P和NP问题懂了些,不过似懂非懂,觉得讲得不是很清楚。本来以为能好好讲讲计算复杂度,没想到都只是讲了些概念。如果想找大O的内容,不妨看看孙智伟翻译的silverman的数论概论的第40章,讲得比较简单清楚。

评分

译者和原作表达上没有很大的区别,都很抽象。

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有