泛函分析、索伯列夫空間和偏微分方程

泛函分析、索伯列夫空間和偏微分方程 pdf epub mobi txt 電子書 下載2025

出版者:世界圖書齣版公司
作者:Haim Brezis
出品人:
頁數:599
译者:
出版時間:2015-7-1
價格:98.00元
裝幀:平裝
isbn號碼:9787510096778
叢書系列:Universitext
圖書標籤:
  • 數學
  • PDE
  • 泛函分析
  • analysis_and_PDE
  • 分析-泛函分析
  • 分析-PDE
  • 分析
  • 《教材
  • 泛函分析
  • 索伯列夫空間
  • 偏微分方程
  • 數學
  • 研究生教材
  • 分析學
  • 微分方程
  • 函數空間
  • 數學理論
  • 應用數學
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

該書提齣瞭一個連貫的、確切的、統一的方法將兩個來自不同領域的元素——泛函分析和偏微分方程,結閤在一起,旨在為具有良好實分析背景的學生提供幫助。 通過詳細地分析一維PDEs的簡單案例,即ODEs,一個對初學者來說比較簡單的方法,該書展示瞭從泛函分析到偏微分方程的平滑過渡。盡管已經有很多關於泛函分析和偏微分方程的書,該書卻是第一本將二者緊密地結閤在一起的書。此外,書中給齣的例題和附加的材料,隻因讀者嚮前沿研究邁進。

該書的第一部分解泛函分析和算子理論中的抽象結果。第二部分主要研究具有特定可導性的函數空間,例如著名的索伯列夫空間,它是現代 PDEs理論的核心。索伯列夫空間在數學中隨處可見,無論是純數學還是應用數學, 以及微分幾何、諧波分析、工程學、機械學、物理學等學科中的綫形還是非綫性偏微分方程,且它已經成為理工科專業研究生的工具書中不可或缺的內容。

讀者對象:理工科專業的研究生、科研工作者以及工程師等。

著者簡介

圖書目錄

Preface
The Hahn-Banach Theorems. Introduction to the Theory of
Conjugate Convex Functions
1.1 The Analytic Form of the Hahn-Banach Theorem: Extension of
Linear Functionals
1.2 The Geometric Forms of the Hahn-Banach Theorem: Separation
of Convex Sets
1.3 The Bidual E. Orthogonality Relations
1.4 A Quick Introduction to the Theory of Conjugate Convex Functions
Comments on Chapter 1
Exercises for Chapter 1
2 The Uniform Boundedness Principle and the Closed Graph Theorem
2.1 The Baire Category Theorem
2.2 The Uniform Boundedness Principle
2.3 The Open Mapping Theorem and the Closed Graph Theorem
2.4 Complementary Subspaces. Right and Left inve.rtibility of Linear
Operators
2.5 Orthogonality Revisited
2.6 An Introduction to Unbounded Linear Operators. Definition of the
Adjoint
2.7 A Characterization of Operators with Closed Range.
A Characterization of Surjective Operators
Comments on Chapter 2
Exercises for Chapter 2
Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform
Convexity
3.1 The Coarsest Topology for Which a Collection of Maps Becomes
Continuous
3.2 Definition and Elementary Properties of the Weak Topology
a(E, E*)
3.3 Weak Topology, Convex Sets, and Linear Operators
3.4- The Weak* Topology tr (E’’, E)
3.5 Reflexive Spaces
3.6 Separable Spaces
3.7 Uniformly Convex Spaces
Comments on Chapter 3
Exercises for Chapter 3
4 Lp Spaces
4.1 Some Results about Integration That Everyone Must Know
4.2 Definition and Elementary Properties of Lp Spaces
4.3 Reflexivity. Separability. Dual of Lp
4.4 Convolution and regularization
4.5 Criterion for Strong Compactness in Lp
Comments on Chapter 4
Exercises for Chapter 4
5 Hilbert Spaces
5.1 Definitions and Elementary Properties. Projection onto a Closed
Convex Set
5.2 The Dual Space of a Hilbert Space
5.3 The Theorems of Stampacchia and Lax-Milgram
5.4 Hilbert Sums. Orthonormal Bases
Comments on Chapter 5
Exercises for Chapter 5
Compact Operators. Spectral Decomposition of Self-Adjoint
Compact Operators
6.1 Definitions. Elementary Properties. Adjoint
6.2 The Riesz-Fredholm Theory
6.3 The Spectrum of a Compact Operator
6.4 Spectral Decomposition of Self-Adjoint Compact Operators
Comments on Chapter 6
Exercises for Chapter 6
The Hille--Yosida Theorem
7.1 Definition and Elementary Properties of Maximal Monotone
Operators
7.2 Solution of the Evolution Problem du
”37 + Au = 0 on [0, +cx),
u(0) = u0. Existence and uniqueness
7.3 Regularity
7.4 The Self-Adjoint Case
Comments on Chapter 7
8 Sobolev Spaces and the Variational Formulation of Boundary Value
Problems in One Dimension
8.1 Motivation
8.2 The Sobolev Space Wl’’P(l)
8.3 The Space W ’’p
8.4 Some Examples of Boundary Value Problems
8.5 The Maximum Principle
8.6 Eigenfunctions and Spectral Decomposition
Comments on Chapter 8
Exercises for Chapter 8
9 Sobolev Spaces and the Variational Formulation of Elliptic
Boundary Value Problems in N Dimensions
9.1 Definition and Elementary Properties of the Sobolev Spaces
WI,P()
9.2 Extension Operators
9.3 Sobolev Inequalities
9.4 The Space W’’P(f2)
9.5 Variational Formulation of Some Boundary Value Problems
9.6 Regularity of Weak Solutions
9.7 The Maximum Principle
9.8 Eigenfunctions and Spectral Decomposition
Comments on Chapter 9 .
10 Evolution Problems: The Heat Equation and the Wave Equation ..
I0.1 The Heat Equation: Existence, Uniqueness, and Regularity
10.2 The Maximum Principle
10.3 The Wave Equation
Comments on Chapter 10
11 Miscellaneous Complements
11.1 Finite-Dimensional and Finite-Codimensional Spaces
11.2 Quotient Spaces
11.3 Some Classical Spaces of Sequences
11.4 Banach Spaces over C: What Is Similar and What Is Different?..
Solutions of Some Exercises
Problems
Partial Solutions of the Problems
Notation
References
Index
· · · · · · (收起)

讀後感

評分

評分

評分

評分

評分

用戶評價

评分

评分

评分

评分

评分

相關圖書

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有