This book, first published in 2005, introduces measure and integration theory as it is needed in many parts of analysis and probability theory. The basic theory - measures, integrals, convergence theorems, Lp-spaces and multiple integrals - is explored in the first part of the book. The second part then uses the notion of martingales to develop the theory further, covering topics such as Jacobi's generalized transformation Theorem, the Radon-Nikodym theorem, Hardy-Littlewood maximal functions or general Fourier series. Undergraduate calculus and an introductory course on rigorous analysis are the only essential prerequisites, making this text suitable for both lecture courses and for self-study. Numerous illustrations and exercises are included and these are not merely drill problems but are there to consolidate what has already been learnt and to discover variants, sideways and extensions to the main material. Hints and solutions can be found on the author's website, which can be reached from www.cambridge.org/9780521615259.
評分
評分
評分
評分
看瞭這麼多關於測度的書,這本解釋最詳細,而且習題有答案。 很好的一本書。推薦。
评分看瞭這麼多關於測度的書,這本解釋最詳細,而且習題有答案。 很好的一本書。推薦。
评分看瞭這麼多關於測度的書,這本解釋最詳細,而且習題有答案。 很好的一本書。推薦。
评分看瞭這麼多關於測度的書,這本解釋最詳細,而且習題有答案。 很好的一本書。推薦。
评分看瞭這麼多關於測度的書,這本解釋最詳細,而且習題有答案。 很好的一本書。推薦。
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有