Vicious Circles

Vicious Circles pdf epub mobi txt 电子书 下载 2026

出版者:CSLI
作者:Jon Barwise
出品人:
页数:400
译者:
出版时间:2004-8-4
价格:GBP 20.50
装帧:Paperback
isbn号码:9781575860084
丛书系列:
图书标签:
  • 心理惊悚
  • 悬疑
  • 复仇
  • 黑暗
  • 扭曲
  • 心理操控
  • 人际关系
  • 道德困境
  • 犯罪
  • 反英雄
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

Many assume that circular phenomena and mathematical rigour are irreconcilable. Barwise and Moss have undertaken to prove this assumption false. Vicious Circles is intended for use by researchers who use hypersets, although the book is accessible to people with widely differing backgrounds and interests.

The following is a comment from amazon.com

This book discusses recent advances in the general field of set theory. The authors study a variant of ZF in which the axiom of foundation is replaced by a new axiom allowing non-well-founded sets. Just as the naturals can be extended to the integers, and the integers to the rationals, and the reals to the complex numbers, in each case by positing new numbers that are the solutions to a class of equations, so this book posits an extension to any model of set theory consisting of the solutions to a class of (systems of) equations having no solutions in ZF. The simplest example is the equation

x = {x},

whose solution,

x = {{{{...}}}} (infinitely deep)

is not permitted in ZF, but exists and is unique in the authors' theory.

The purpose of this extension to ZF is to create a set theory in which certain circular or infinite phenomena from computer science and other fields, e.g. cyclic data streams, can be much more directly modeled than is now possible in ZF. Currently in ZF in order to represent a cyclic data stream one has to develop the aparatus for natural numbers, and then represent the stream to be a function from the natural numbers into some suitable set representing the type of data. But in the author's set theory the stream could be represented as an unfounded set that is the solution to a simple equation, and many of its properties could then be more easily deduced without resort to arithmetic.

I found this book absolutely fascinating, and I highly recommend it to anyone who has had a course in set theory. The theory in the book is quite elegant and satisfying.

I was delighted to learn that there is still room for new variations of the axioms of set theory, a subject I thought (probably naively) had been fairly static for 60 years.

《破碎的航迹:迷失在群岛间的幽灵船》 作者:伊芙琳·里德 类型:历史悬疑/海洋探险 页数:约480页 --- 内容梗概: 1888年,维多利亚时代的伦敦笼罩在一片工业的迷雾与阶级的对立之中。年轻的海洋历史学家、同时也是业余电报操作员的亚瑟·彭德尔顿,偶然截获了一段意义不明、断断续续的摩尔斯电码。这段电码指向一个被世人遗忘的事件——一艘名为“海妖之歌”的蒸汽辅助帆船,该船于三十年前载着一批富有的实业家及其家眷,从利物浦港启航,目标是新发现的太平洋珊瑚礁群岛,随后便杳无音信,成为近代航海史上最令人扼腕的谜团之一。 官方记录认定“海妖之歌”是遭遇了罕见的南大西洋风暴,船毁人亡。然而,亚瑟破译的电码却暗示了一个截然不同的、令人不安的真相。电码中反复出现的词汇——“幽灵之灯”、“失语的罗盘”以及“珊瑚王的低语”——将他从伦敦的尘封档案室,引向了苏格兰海岛的嶙峋海岸线和葡萄牙里斯本充满异域气息的码头。 亚瑟发现,当年船上载着的不仅仅是财富和野心,还包括一份关乎全球贸易格局的秘密文件,以及一个被严密看管的、具有争议性的科学实验样本。他的调查很快触及了维多利亚上流社会那些精心编织的谎言与权力斗争的核心。每当他接近真相,就会有“意外”发生:图书馆失火、重要的证人突然失踪、以及那些仿佛被预先设定好的“巧合”。 故事的主线围绕着亚瑟追踪“海妖之歌”最后已知航线展开。他不得不与一位神秘的、精通密码学的葡萄牙籍前外交官伊内斯·费雷拉合作。伊内斯似乎与这艘失踪的船有着私人恩怨,她坚信船上的失踪者并非全部遇难,而是被某种有预谋的行动转移或囚禁了起来。 随着亚瑟和伊内斯深入调查,他们发现这艘船的消失,与一个致力于探索“非物质能量”的秘密社团——“星象观测者会”——有着千丝万缕的联系。这个社团相信,特定的海洋区域在特定的天文周期下,能够开启通往“其他领域”的短暂通道。亚瑟开始怀疑,“海妖之歌”的失踪,或许与一次失败的、或过于成功的“跨越”有关。 调查的高潮发生在亚瑟和伊内斯历经艰险,终于抵达了电码中提及的“群岛残骸”——一个位于南太平洋上、几乎被地图册遗忘的火山群岛。在那里,他们发现的不是残骸,而是一个似乎被时间遗忘的社区,那里的人们说着古老的方言,生活方式停留在二十世纪初。这个社区的长老声称,他们世代守护着一个“从海上降临的庞大金属之物”,以及一群“永远沉默的乘客”。 亚瑟必须在揭露这个跨越时代的阴谋与保护这个与世隔绝的社区之间做出抉择。真相不仅关乎一艘船的命运,更关乎十九世纪末科学与迷信的边界,以及那些被权力阶层掩盖的,关于人类探索极限的代价。最终,亚瑟能否在被卷入“幽灵船”的永恒迷雾之前,拼凑出完整的航迹,并揭示“海妖之歌”上究竟发生了什么? --- 深度解析与主题探讨: 《破碎的航迹》不仅是一部海上传奇,更是一部对维多利亚时代“进步”的深刻反思。小说巧妙地融合了硬派侦探的逻辑推演与对早期科学神秘主义的探究。 1. 历史的阴影与档案的裂缝: 小说将重点放在了“官方叙事”与“被遗忘的记录”之间的张力上。亚瑟的调查过程,便是对历史文本进行批判性阅读的过程,展示了权力如何塑造历史记载,而真正的事实往往隐藏在那些被认为是“噪音”或“错误”的边角信息之中。 2. 科技的边界与伦理困境: “海妖之歌”事件是特定时代背景下,对新科技(蒸汽动力、远距离通讯)与旧有迷信(航海传说、占星术)碰撞的隐喻。小说探讨了当科学研究超出了当时的伦理框架时,可能带来的灾难性后果。例如,船上运载的“科学样本”究竟是什么性质?它如何影响了船只的航行轨迹? 3. 地理与心理的迷失: 群岛的设计是小说中极为关键的元素。这些岛屿并非简单的地理坐标,而是心理和时间上的“迷失区”。它们代表着文明的边缘,是那些不被主流社会接受的知识和实验得以滋生的地方。亚瑟和伊内斯的探险,也是他们各自内心创伤和执念的投射。伊内斯对失踪亲人的追寻,推动了大部分的行动,使这场调查带上了强烈的个人救赎色彩。 4. 密码学与沟通的失败: 电报的使用贯穿始终。电码的残缺和误译,象征着信息传递在巨大力量面前的脆弱性。亚瑟的专业技能,帮助他重建了被故意破坏的通信链条,同时也揭示了在信息被严格控制的时代,解密真相是何等艰难。 --- 风格与受众: 本书的叙事风格冷峻而细密,充满了爱伦·坡式的阴郁氛围和儒勒·凡尔纳式的探险精神。语言考究,对十九世纪的社会习俗、航海术语及早期电报技术的描写力求准确,旨在为读者构建一个真实可触的时代背景。 适合读者: 喜爱本格推理、历史悬疑(如安妮·莱斯早期的作品或Umberto Eco的作品风格),对维多利亚时代秘密社团、航海探险以及早期科学哲学交叉题材感兴趣的读者。 核心吸引力: 一艘船在已知海图上消失了三十年,但留下的线索却指向一个不可能存在的地方。这不是简单的海盗故事,而是一场关于时间和空间的迷宫追逐。

作者简介

Jon Barwise (1942–2000) was professor of philosophy, mathematics, and computer science at Indiana University and one of the founding members of the Center for the Study of Language and Information (CSLI).

Lawrence S. Moss is professor of mathematics; director of the Program in Pure and Applied Logic; an adjunct professor of computer science, informatics, linguistics, and philosophy; and a member of the Programs in Cognitive Science and Computational Linguistics, all at Indiana University, Bloomington.

目录信息

Contents
Part I Background
1. Introduction
1.1 Set theory and circularity
1.2 Preview
2. Background on set theory
2.1 Some basic operations on sets
2.2 Sets and classes
2.3 Ordinals
2.4 The Axiom of Plenitude
2.5 The Axiom of Foundation
2.6 The axioms of set theory
Part II Vicious Circles
3. Circularity in computer science
3.1 Streams
3.2 Labeled transition systems
3.3 Closures
3.4 Self-applicative programs
3.5 Common themes
4. Circularity in philosophy
4.1 Common knowledge and the Conway Paradox
4.2 Other intentional phenomena
4.3 Back to basics
4.4 Examples from other fields
5. Circularity and paradox
5.1 The liar paradox
5.2 Paradox of denotation
5.3 The hypergame paradox
5.4 Russell's paradox
5.5 Lessons from the paradoxes
Part III Basic Theory
6. The solution lemma
6.1 Modeling equations and their solutions
6.2 The solution lemma formulation of AFA
6.3 An extension of the Flat Solution Lemma
7. Bisimulation
7.1 Bisimilar systems of equations
7.2 Strong extensionality of sets
7.3 Applications of bisimulation
7.4 Computing bisimulation
8. Substitution
8.1 General systems of equations
8.2 Substitution
8.3 The general forms of the solution lemma
8.4 The algebra of substitutions
9. Building a model of ZFA
9.1 The Model
9.2 Bisimulation systems
9.3 Verifying ZFC~
94 Verifying AFA
Part IV Elementary Applications
10. Graphs
10.1 Graphs and sets they picture
10.2 Labeled graphs
10.3 Bisimilar graphs
11. Modal Logic
11.1 An introduction to modal logic
11.2 Characterizing sets by sentences
11.3 Baltag's theorems
11.4 Proof theory and completeness
11.5 Characterizing classes by modal theories
12. Games
12.1 Modeling games
12.2 Applications of games
12.3 The hypergame paradox resolved
13. The semantical paradoxes
13.1 Partial model theory
13.2 Accessible models
13.3 Truth and paradox
13.4 The liar
13.5 Reference and paradox
14. Streams
14.1 The set^∞ of streams as a fixed point
14.2 Streams, coinduction and corecursion
14.3 Stream systems
Part V Further Theory
15. Greatest fixed points
15.1 Fixed points of monotone operators
15.2 Least fixed points
15.3 Greatest fixed points
15.4 Games and fixed points
16. Uniform operators
16.1 Systems of equations as coalgebras
16.2 Morphisms
16.3 Solving coalgebras
16.4 Representing the greatest fixed points
16.5 The Solution Lemma Lemma
16.6 Allowing operations in equations
17. Corecursion
17.1 Smooth operators
17.2 The corecursion theorem
17.3 Simultaneous corecursion
17.4 Bisimulation generalized
Part VI Further Applications
18. Some important greatest fixed points
18.1 Hereditarily finite sets
18.2 Infinite binary trees
18.3 Canonical labeled transition systems
18.4 Deterministic automata and languages
18.5 Labeledsets
19. Modal logics from operators
19.1 Some example logics
19.2 Operator logics definced
19.3Characterization theorems
20. Wanted: a strongly extensional theory of classes
20.1 Paradise lost
20.2 What are ZFC adn ZFA axiomatizations of?
20.3 Four criteria
20.4 Classes as façon de pqrler
20.5 The theory of SEC0
20.6 Parting thoughts on the paradoxes
21. Past, present and future
21.1 The past
21.2 The present
21.3 The future
Appendix: definitions and results on operators
Answers to the Exercises
Bibliography
Index
· · · · · · (收起)

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有