1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
         1.1 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
         1.1.1 Deterministic Differential Equation ..................... 1
         1.1.2 Stochastic Differential Equation ........................ 2
         1.1.3 Equation of Motion for the Distribution Function ......... 3
         1.2 Fokker-Planck Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
         1.2.1 Fokker-Planck Equation for One Variable ............... 4
         1.2.2 Fokker-Planck Equation for N Variables . . . . . . . . . . . . . . . . . 5
         1.2.3 How Does a Fokker-Planck Equation Arise? ............. 5
         1.2.4 Purpose of the Fokker-Planck Equation ................. 6
         1.2.5 Solutions of the Fokker-Planck Equation ................ 7
         1.2.6 Kramers and Smoluchowski Equations .................. 7
         1.2.7 Generalizations of the Fokker-Planck Equation ........... 8
         1.3 Boltzmann Equation ....................................... 9
         1.4 Master Equation .......................................... 11
         2. Probability Theory ............................................ 13
         2.1 Random Variable and Probability Density ....... " .. " . .. . . . . . 13
         2.2 Characteristic Function and Cumulants ....................... 16
         2.3 Generalization to Several Random Variables ......... " . .. . . .. . 19
         2.3.1 Conditional Probability Density ........................ 21
         2.3.2 Cross Correlation .................................... 21
         2.3.3 Gaussian Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
         2.4 Time-Dependent Random Variables .......................... 25
         2.4.1 Classification of Stochastic Processes. . . . . . . . . . . . . . . . . . . . 26
         2.4.2 Chapman-Kolmogorov Equation ....................... 28
         2.4.3 Wiener-Khintchine Theorem ........................... 29
         2.5 Several Time-Dependent Random Variables ................... 30
         3. Langevin Equations ........................................... 32
         3.1 Langevin Equation for Brownian Motion. .. . . . . . ... . . . . .. . .. . . 32
         3.1.1 Mean-Squared Displacement ......... " .. " . . .. . .. . .. .. 34
         3.1.2 Three-Dimensional Case .............................. 36
         3.1.3 Calculation of the Stationary Velocity Distribution Function 36
         3.2 Ornstein-Uhlenbeck Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
         3.2.1 Calculation of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
         3.2.2 Correlation Function ................................ 41
         3.2.3 Solution by Fourier Transformation. . . . . . . . . . . . . . . . . . . . 42
         3.3 Nonlinear Langevin Equation, One Variable ............. " .. . 44
         3.3.1 Example ........................................... 45
         3.3.2 Kramers-Moyal Expansion Coefficients. . . . . . . . . . . . . . . . . 48
         3.3.3 Ito's and Stratonovich's Definitions. . . . . . . . . . . . . . . . . . . . 50
         3.4 Nonlinear Langevin Equations, Several Variables ............ , . 54
         3.4.1 Determination of the Langevin Equation from Drift and
         Diffusion Coefficients ............................... 56
         3.4.2 Transformation of Variables .......................... 57
         3.4.3 How to Obtain Drift and Diffusion Coefficients for Systems 58
         3.5 Markov Property ................. " ................. " .. . 59
         3.6 Solutions of the Langevin Equation by Computer Simulation.. . . 60
         4. Fokker-Planck Equation ....................................... 63
         4.1 Kramers-Moyal Forward Expansion. . . . . . .. . .. . . ... . .. . .. ... 63
         4.1.1 Formal Solution .................................... 66
         4.2 Kramers-Moyal Backward Expansion . . . . . . . . . . . . . . . . . . . . . . . . 67
         4.2.1 Formal Solution .................................... 69
         4.2.2 Equivalence of the Solutions of the Forward and Backward
         Equations .......................................... 69
         4.3 Pawula Theorem ......................................... 70
         4.4 Fokker-Planck Equation for One Variable. . . . . . . . . . . . . . . . . . . . 72
         4.4.1 Transition Probability Density for Small Times .......... 73
         4.4.2 Path Integral Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
         4.5 Generation and Recombination Processes .................... 76
         4.6 Application of Truncated Kramers-Moyal Expansions . . . . . . . . . . 77
         4.7 Fokker-Planck Equation for N Variables ..................... 81
         4.7.1 Probability Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
         4.7.2 Joint Probability Distribution ......................... 85
         4.7.3 Transition Probability Density for Small Times .......... 85
         4.8 Examples for Fokker-Planck Equations with Several Variables. . . 86
         4.8.1 Three-Dimensional Brownian Motion without Position
         Variable ........................................... 86
         4.8.2 One-Dimensional Brownian Motion in a Potential. . . . . . . . 87
         4.8.3 Three-Dimensional Brownian Motion in an External Force 87
         4.8.4 Brownian Motion of Two Interacting Particles in an External
         Potential .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
         4.9 Transformation of Variables ............................... 88
         4.10 Covariant Form of the Fokker-Planck Equation. . . . . . . . . . . . . . . 91
         5. Fokker-Planck Equation for One Variable; Methods of Solution. . . . . . 96
         5.1 Normalization ........................................... 96
         5.2 Stationary Solution ....................................... 98
         5.3 Ornstein-Uhlenbeck Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
         5.4 Eigenfunction Expansion .................................. 101
         5.5 Examples................................................ 108
         5.5.1 Parabolic Potential ................................. 108
         5.5.2 Inverted Parabolic Potential ......................... 109
         5.5.3 Infinite Square Well for the Schrodinger Potential. . . . . . . 110
         5.5.4 V-Shaped Potential for the Fokker-Planck Equation. . . .. 111
         5.6 Jump Conditions.. ... ...... . ... ... ... . ... ... ... . .. . . ... .. 112
         5.7 A Bistable Model Potential ................................. 114
         5.8 Eigenfunctions and Eigenvalues of Inverted Potentials ......... 117
         5.9 Approximate and Numerical Methods for Determining
         Eigenvalues and Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
         5.9.1 Variational Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 120
         5.9.2 Numerical Integration .............................. 120
         5.9.3 Expansion into a Complete Set ....................... 121
         5.10 Diffusion Over a Barrier ................................... 122
         5.10.1 Kramers' Escape Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 123
         5.10.2 Bistable and Metastable Potential. . . . . . . . . . . . . . . . . . . .. 125
         6. Fokker-Planck Equation for Several Variables; Methods of Solution .. 133
         6.1 Approach of the Solutions to a Limit Solution. . . . . . . . . . . . . . . .. 134
         6.2 Expansion into a Biorthogonal Set .......................... 137
         6.3 Transformation of the Fokker-Planck Operator, Eigenfunction
         Expansions .............................................. 139
         6.4 Detailed Balance ......................................... 145
         6.5 Ornstein-Uhlenbeck Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153
         6.6 Further Methods for Solving the Fokker-Planck Equation ...... 158
         6.6.1 Transformation of Variables ......................... 158
         6.6.2 Variational Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
         6.6.3 Reduction to an Hermitian Problem. . . . . . . . . . . . . . . . . .. 159
         6.6.4 Numerical Integration .............................. 159
         6.6.5 Expansion into Complete Sets. . . . . . . . . . . . . . . . . . . . . . .. 159
         6.6.6 Matrix Continued-Fraction Method. . . . . . . . . . . . . . . . . . . 160
         6.6.7 WKB Method. . ..... . ... . ... ... ... .... . .. . .. . . ..... 162
         7. Linear Response and Correlation Functions ....................... 163
         7.1 Linear Response Function ................................. 164
         7.2 Correlation Functions ..................................... 166
         7.3 Susceptibility ............................................ 172
         8. Reduction of the Number of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . .. 179
         8.1 First-Passage Time Problems ............................... 179
         8.2 Drift and Diffusion Coefficients Independent of Some Variables 183
         8.2.1 Time Integrals of Markovian Variables ................ 184
         8.3 Adiabatic Elimination of Fast Variables. . . . . . . . . . . . . . . . . . . . . 188
         8.3.1 Linear Process with Respect to the Fast Variable ....... 192
         8.3.2 Connection to the Nakajima-Zwanzig Projector
         Formalism ....................................... 194
         9. Solutions of Tridiagonal Recurrence Relations, Application to Ordinary
         and Partial Differential Equations .............................. 196
         9.1 Applications and Forms of Tridiagonal Recurrence Relations. . . 197
         9.1.1 Scalar Recurrence Relation ......................... 197
         9.1.2 Vector Recurrence Relation. . . . . . . . . . . . . . . . . . . . . . . . . 199
         9.2 Solutions of Scalar Recurrence Relations .................... 203
         9.2.1 Stationary Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
         9.2.2 Initial Value Problem .............................. 209
         9.2.3 Eigenvalue Problem ............................... 214
         9.3 Solutions of Vector Recurrence Relations. . . . . . . . . . . . . . . . . . . . 216
         9.3.1 Initial Value Problem .............................. 217
         9.3.2 Eigenvalue Problem ............................... 220
         9.4 Ordinary and Partial Differential Equations with Multiplicative
         Harmonic Time-Dependent Parameters ..................... 222
         9.4.1 Ordinary Differential Equations. . . . . . . . . . . . . . . . . . . . . 222
         9.4.2 Partial Differential Equations ....................... 225
         9.5 Methods for Calculating Continued Fractions. . . . . . . . . . . . . . .. 226
         9.5.1 Ordinary Continued Fractions. . . . . . . . . . . . . . . . . . . . . . . 226
         9.5.2 Matrix Continued Fractions. . . . . . . . . . . . . . . . . . . . . . . .. 227
         10. Solutions of the Kramers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 229
         10.1 Forms of the Kramers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . .. 229
         10.1.1 Normalization of Variables ......................... 230
         10.1.2 Reversible and Irreversible Operators. . . . . . . . . . . . . . . . . 231
         10.1.3 Transformation of the Operators .................... 233
         10.1.4 Expansion into Hermite Functions ................... 234
         10.2 Solutions for a Linear Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 237
         10.2.1 Transition Probability ............................. 238
         10.2.2 Eigenvalues and Eigenfunctions ..................... 241
         10.3 Matrix Continued-Fraction Solutions of the Kramers Equation. 249
         10.3.1 Initial Value Problem .............................. 251
         10.3.2 Eigenvalue Problem ............................... 255
         10.4 Inverse Friction Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 257
         10.4.1 Inverse Friction Expansion for Ko(t), Go,o(t) and Lo(t) . . 259
         10.4.2 Determination of Eigenvalues and Eigenvectors. . . . . . . . 266
         10.4.3 Expansion for the Green's Function Gn,m(t) ........... 268
         10.4.4 Position-Dependent Friction ........................ 275
         11. Brownian Motion in Periodic Potentials ......................... 276
         11.1 Applications ............................................ 280
         11.1.1 Pendulum........................................ 280
         11.1.2 Superionic Conductor ....... , ................ " . '" 280
         11.1.3 Josephson Tunneling Junction ...................... 281
         11.1.4 Rotation of Dipoles in a Constant Field ............... 282
         11.1.5 Phase-Locked Loop ............................... 283
         11.1.6 Connection to the Sine-Gordon Equation ............. 285
         11.2 Normalization of the Langevin and Fokker-Planck Equations .. 286
         11.3 High-Friction Limit ...................................... 287
         11.3.1 Stationary Solution ... '" ... , ...... , . . .. ... . . ... . .. 287
         11.3.2 Time-Dependent Solution .......................... 294
         11.4 Low-Friction Limit ...................................... 300
         11.4.1 Transformation to E and x Variables ................. 301
         11.4.2 'Ansatz' for the Stationary Distribution Functions . . . . . . 304
         11.4.3 x-Independent Functions ........................... 306
         11.4.4 x-Dependent Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
         11.4.5 Corrected x-Independent Functions and Mobility. . . . . . . 310
         11.5 Stationary Solutions for Arbitrary Friction .................. 314
         11.5.1 Periodicity of the Stationary Distribution Function.. . .. 315
         11.5.2 Matrix Continued-Fraction Method.. . . .. .. . .. . . . .. . . 317
         11.5.3 Calculation of the Stationary Distribution Function .... 320
         11.5.4 Alternative Matrix Continued Fraction for the Cosine
         Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
         11.6 Bistability between Running and Locked Solution ............ 328
         11.6.1 Solutions Without Noise ........................... 329
         11.6.2 Solutions With Noise .............................. 334
         11.6.3 Low-Friction Mobility With Noise ................... 335
         11.7 Instationary Solutions .................................... 337
         11.7.1 Diffusion Constant ................................ 342
         11.7.2 Transition Probability for Large Times ............... 343
         11.8 Susceptibilities .......................................... 347
         11.8.1 Zero-Friction Limit.. . . . .. . .. . . . .. . .. . .. . .. . . . .. .. . 355
         11.9 Eigenvalues and Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
         11.9.1 Eigenvalues and Eigenfunctions in the Low-Friction Limit 365
         12. Statistical Properties of Laser Light ............................. 374
         12.1 Semiclassical Laser Equations ............................. 377
         12.1.1 Equations Without Noise .... , ...... ,. . .. . .. . . ... ... 377
         12.1.2 LangevinEquation ................................ 379
         12.1.3 Laser Fokker-Planck Equation ...... ,. . .. . .. . . .. . .. . 382
         12.2 Stationary Solution and Its Expectation Values. . . . . . . . . . . . . . . 384
         12.3 Expansion in Eigenmodes ................................. 387
         12.4 Expansion into a Complete Set; Solution by Matrix Continued
         Fractions ............................................... 394
         12.4.1 Determination of Eigenvalues ....................... 396
         12.5 Transient Solution ....................................... 398
         12.5.1 Eigenfunction Method ............................. 398
         12.5.2 Expansion into a Complete Set ...................... 401
         12.5.3 Solution for Large Pump Parameters. . . .. .. ... . . ... .. 404
         12.6 Photoelectron Counting Distribution ....................... 408
         12.6.1 Counting Distribution for Short Intervals ............. 409
         12.6.2 Expectation Values for Arbitrary Intervals ............ 412
         Appendices ..................................................... 414
         A1 Stochastic Differential Equations with Colored Gaussian Noise 414
         A2 Boltzmann Equation with BGK and SW Collision Operators .. , 420
         A3 Evaluation of a Matrix Continued Fraction for the Harmonic
         Oscillator .............................................. 422
         A4 Damped Quantum-Mechanical Harmonic Oscillator .......... 425
         A5 Alternative Derivation of the Fokker-Planck Equation ........ 429
         A6 Fluctuating Control Parameter ............................ 431
         S. Supplement to the Second Edition ............................... 436
         S.1 Solutions of the Fokker-Planck Equation by Computer
         Simulation (Sect. 3.6) .................................... 436
         S.2 Kramers-Moyal Expansion (Sect. 4.6) . . . . . . . . . . . . . . . . . . . . . . . 436
         S.3 Example for the Covariant Form of the Fokker-Planck Equation
         (Sect. 4.10) ............................................. 437
         S.4 Connection to Supersymmetry and Exact Solutions of the
         One Variable Fokker-Planck Equation (Chap. 5) ............. 438
         S.5 Nondifferentiability of the Potential for the Weak Noise
         Expansion (Sects. 6.6 and 6.7) ............................. 438
         S.6 Further Applications of Matrix Continued-Fractions
         (Chap. 9) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 439
         S.7 Brownian Motion in a Double-Well Potential
         (Chaps. 10 and 11) ....................................... 439
         S.8 Boundary Layer Theory (Sect. 11.4) ........................ 440
         S.9 Calculation of Correlation Times (Sect. 7.12) ................ 441
         S.10 Colored Noise (Appendix A1) ............................. 443
         S.11 Fokker-Planck Equation with a Non-Positive-Definite Diffusion
         Matrix and Fokker-Planck Equation with Additional Third-
         Order-Derivative Terms .................................. 445
         References ...................................................... 448
         Subject Index ................................................... 463
      · · · · · ·     (
收起)