The Laplace Distribution and Generalizations

The Laplace Distribution and Generalizations pdf epub mobi txt 电子书 下载 2026

出版者:Birkhäuser Boston
作者:Samuel Kotz
出品人:
页数:349
译者:
出版时间:2001-5
价格:USD 99.00
装帧:Hardcover
isbn号码:9780817641665
丛书系列:
图书标签:
  • 统计学习
  • Laplace distribution
  • Generalized distributions
  • Statistical modeling
  • Probability theory
  • Mathematical statistics
  • Extreme value theory
  • Robust statistics
  • Signal processing
  • Machine learning
  • Data analysis
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

This book describes the inferential and modeling advantages that this distribution, together with its generalizations and modifications, offers. The exposition systematically unfolds with many examples, tables, illustrations, and exercises. A comprehensive index and extensive bibliography also make this book an ideal text for a senior undergraduate and graduate seminar on statistical distributions, or for a short half-term academic course in statistics, applied probability, and finance.

概率之海中的优雅曲线:探索拉普拉斯分布及其拓展 在浩瀚的概率分布家族中,有一些成员以其简洁的数学形式和广泛的应用场景脱颖而出,拉普拉斯分布便是其中一颗璀璨的明星。它以法国数学家皮埃尔-西蒙·拉普拉斯的名字命名,以其对称的钟形曲线和在信号处理、统计建模、风险管理等领域的卓越表现,吸引了无数研究者和实践者的目光。本书《The Laplace Distribution and Generalizations》正是这样一本深入剖析拉普拉斯分布精髓,并将其理论推向更广阔疆域的学术专著。 本书并非仅仅罗列公式和定义,而是旨在构建一个完整而深刻的理解框架,帮助读者领略拉普拉斯分布的数学之美,洞察其背后的统计意义,并掌握其在复杂现实问题中的应用之道。我们将从拉普拉斯分布的基本定义出发,逐步深入其核心性质,再将目光投向一系列与之相关的、更为普遍化的分布模型,展现数学理论的层层递进和应用领域的不断拓展。 第一章:拉普拉斯分布的基石 本章将奠定我们整个学习旅程的坚实基础。我们将首先严谨地定义拉普拉斯分布,通过其概率密度函数(PDF)和累积分布函数(CDF)揭示其独特的形状特征。与常见的正态分布相比,拉普拉斯分布拥有更尖锐的峰值和更厚的尾部,这一特性赋予了它在处理异常值或“重尾”数据时独特的优势。我们将通过直观的图形和数学推导,深入理解这种形状差异的根源及其统计含义。 接着,我们将详细探讨拉普拉斯分布的各项重要性质。这包括其均值、方差、偏度、峰度等统计矩,以及其特征函数、矩母函数等生成函数。理解这些性质不仅有助于我们更全面地把握拉普拉斯分布的行为模式,更能为后续的理论分析和模型构建提供必要的工具。我们将重点关注拉普拉斯分布与泊松过程、指数分布之间的内在联系,揭示其在随机事件建模中的潜力。 此外,本章还将介绍拉普拉斯分布的一些基本变体,例如尺度可变的拉普拉斯分布,以及其在不同维度下的推广。这将为我们后续章节中更复杂的广义模型打下铺垫。我们将通过具体的例子,说明如何根据实际数据调整拉普拉斯分布的参数,使其更好地拟合观测结果。 第二章:拉普拉斯分布的统计推断 理论的美妙需要通过实践来检验。本章将聚焦于拉普拉斯分布的统计推断,探讨如何从样本数据中估计其参数,并对模型进行检验。我们将详细介绍参数估计的方法,包括矩估计法和最大似然估计法。对于每种方法,我们都会提供清晰的推导过程,并讨论其优缺点以及适用条件。 例如,在最大似然估计部分,我们将引导读者如何构建拉普拉斯分布的对数似然函数,并利用微积分的方法求解使得似然函数最大的参数值。我们还将讨论估计量的渐近性质,如一致性、渐近正态性等,以评估估计量的优劣。 除了参数估计,本章还将涉及基于拉普拉斯分布的假设检验。我们将学习如何构建检验统计量,并确定其在零假设下的分布,从而对关于拉普拉斯分布的各种假设进行检验,例如检验样本是否来自具有特定参数的拉普拉斯分布,或者比较不同拉普拉斯分布模型是否显著不同。 本章的另一重点是置信区间的构建。我们将介绍如何利用参数估计量及其性质,构造拉普拉斯分布参数的置信区间,为参数的真实值提供一个范围估计。这将帮助我们量化估计的不确定性,并做出更审慎的统计判断。 第三章:拉普拉斯分布的应用场景 本章将跳出理论的象牙塔,深入到拉普拉斯分布在各个领域的实际应用。我们将通过详细的案例分析,展现拉普拉斯分布如何解决现实世界中的复杂问题。 在信号处理领域,拉普拉斯分布因其处理稀疏信号的能力而备受青睐。我们将探讨其在图像去噪、特征提取和压缩感知等方面的应用。例如,在图像去噪中,许多图像的变换域表示(如小波变换)具有稀疏的拉普拉斯分布特性,利用这一点可以设计出高效的去噪算法。 在金融数学和风险管理中,拉普拉斯分布的重尾特性使其成为刻画资产收益率分布和评估极端风险的有力工具。我们将介绍如何利用拉普拉斯分布来建模资产价格的波动,并计算 VaR(Value at Risk)和 ES(Expected Shortfall)等风险度量指标。 在机器学习和统计建模中,拉普拉斯分布的L1正则化特性使其在模型选择和特征选择中扮演着重要角色。我们将探讨其在 LASSO(Least Absolute Shrinkage and Selection Operator)回归中的应用,以及它如何通过将不重要特征的系数压缩至零,实现模型的稀疏化和可解释性。 此外,本章还将触及拉普拉斯分布在通信系统、可靠性工程、经济学等其他领域的应用,展示其跨学科的强大生命力。每一个案例都将详细阐述模型的构建过程,参数的估计与解释,以及最终的应用效果。 第四章:广义拉普拉斯分布 当现实世界的复杂性超出了标准拉普拉斯分布的描述能力时,我们就需要更具弹性的工具。本章将重点介绍广义拉普拉斯分布(Generalized Laplace Distribution, GLD)及其更广泛的拓展。GLD通过引入更多的自由参数,能够捕捉更丰富的分布形态,包括不对称性和不同的尾部行为。 我们将从最基本的GLD模型开始,解析其概率密度函数中新引入参数的含义及其对分布形状的影响。例如,一个参数可能控制分布的对称性,另一个参数可能影响其峰度和尾部厚度。我们将通过大量的图例,直观地展示不同参数组合下的GLD形态,帮助读者建立直观认识。 接着,我们将深入探讨一系列具体的广义拉普拉斯分布族,例如: 偏拉普拉斯分布(Skewed Laplace Distribution):当需要描述不对称数据时,偏拉普拉斯分布能提供比标准拉普拉斯分布更灵活的建模能力。我们将研究其不对称参数的意义,以及如何将其应用于金融数据或生物测量数据中。 截尾拉普拉斯分布(Truncated Laplace Distribution):在某些应用场景下,我们可能只关心数据在特定区间内的分布。截尾拉普拉斯分布能够满足此类需求,其截尾点和截尾方式的设置将是本节的重点。 混合拉普拉斯分布(Mixture of Laplace Distributions):将多个拉普拉斯分布混合,可以构建出更复杂的、多峰的分布形态,这在建模具有不同子群体的异质性数据时非常有用。我们将讨论混合模型的设计原则和参数估计的挑战。 对于每一种广义分布,我们都会详细讨论其数学性质,如均值、方差、特征函数等,并与标准拉普拉斯分布进行对比,突出其优越性。 第五章:高级广义模型与现代进展 本章将带领读者进入拉普拉斯分布理论的更前沿领域,探讨一系列更高级的广义模型,以及近年来在这一领域取得的最新研究进展。 我们将介绍基于不同生成机制的广义拉普拉斯分布,例如: 复合泊松-拉普拉斯模型:将泊松过程与拉普拉斯分布相结合,可以用来描述随机跳跃和连续变化的联合过程。这在风险建模和金融时间序列分析中具有重要意义。 基于柯西过程的拉普拉斯分布:柯西分布以其“病态”的无穷方差而闻名,将其与拉普拉斯分布相结合,可以构建出具有极厚尾部的分布,适用于描述极端事件。 多维广义拉普拉斯分布:将广义拉普拉斯分布的思想推广到多维空间,以描述多个随机变量之间的联合分布。我们将探讨其协方差结构和相关的推断问题。 此外,本章还将关注一些新兴的研究方向,例如: 拉普拉斯分布在贝叶斯统计中的应用:如何将拉普拉斯分布作为先验分布或似然函数,构建贝叶斯模型,以及相关的计算方法。 基于拉普拉斯分布的非参数和半参数方法:探索如何利用拉普拉斯分布的特性,设计更灵活的统计模型,摆脱参数形式的束缚。 计算方法与软件实现:讨论高效计算广义拉普拉斯分布的数值方法,以及如何在常用的统计软件(如 R、Python)中实现相关的函数和模型。 通过本章的学习,读者将对拉普拉斯分布理论的广度和深度有更全面的认识,并了解其在现代统计学和机器学习研究中的前沿地位。 结语 《The Laplace Distribution and Generalizations》并非一本孤立的数学理论著作,它是一扇通往概率世界深邃之美的窗口,是一座连接理论与实践的桥梁。本书旨在激发读者对概率分布的深入思考,培养其运用数学工具解决实际问题的能力。无论是统计学专业的研究者、数据科学家,还是对概率模型感兴趣的各个领域的专业人士,都能从本书中汲取宝贵的知识和灵感,在概率之海中航行得更远、更稳。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有