Quantum Theory, Groups and Representations

Quantum Theory, Groups and Representations pdf epub mobi txt 电子书 下载 2025

出版者:Springer
作者:Woit, Peter
出品人:
页数:668
译者:
出版时间:2017-11-30
价格:0
装帧:Hardcover
isbn号码:9783319646121
丛书系列:
图书标签:
  • 量子力学
  • 群论
  • QM
  • 数学物理
  • Lie_Algebra
  • 量子理论
  • 群论
  • 表示论
  • 数学物理
  • 量子力学
  • 抽象代数
  • 李群
  • 量子场论
  • 拓扑学
  • 希尔伯特空间
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

Systematically emphasizes the role of Lie groups, Lie algebras, and their unitary representation theory in the foundations of quantum mechanics

Introduces fundamental structures and concepts of representation theory in an elementary, physically relevant context

Gives a careful treatment of the mathematical subtleties of quantum theory, without obscuring its global mathematical shape

作者简介

Peter Woit is a Senior Lecturer of Mathematics at Columbia University. His general area of research interest is the relationship between mathematics, especially representation theory, and fundamental physics, especially quantum field theories like the Standard Model.

目录信息

Preface.- 1 Introduction and Overview.- 2 The Group U(1) and its Representations.- 3 Two-state Systems and SU(2).- 4 Linear Algebra Review, Unitary and Orthogonal Groups.- 5 Lie Algebras and Lie Algebra Representations.- 6 The Rotation and Spin Groups in 3 and 4 Dimensions.- 7 Rotations and the Spin 1/2 Particle in a Magnetic Field.- 8 Representations of SU(2) and SO(3).- 9 Tensor Products, Entanglement, and Addition of Spin.- 10 Momentum and the Free Particle.- 11 Fourier Analysis and the Free Particle.- 12 Position and the Free Particle.- 13 The Heisenberg group and the Schrödinger Representation.- 14 The Poisson Bracket and Symplectic Geometry.- 15 Hamiltonian Vector Fields and the Moment Map.- 16 Quadratic Polynomials and the Symplectic Group.- 17 Quantization.- 18 Semi-direct Products.- 19 The Quantum Free Particle as a Representation of the Euclidean Group.- 20 Representations of Semi-direct Products.- 21 Central Potentials and the Hydrogen Atom.- 22 The Harmonic Oscillator.- 23 Coherent States and the Propagator for the Harmonic Oscillator.- 24 The Metaplectic Representation and Annihilation and Creation Operators, d = 1.- 25 The Metaplectic Representation and Annihilation and Creation Operators, arbitrary d.- 26 Complex Structures and Quantization.- 27 The Fermionic Oscillator.- 28 Weyl and Clifford Algebras.- 29 Clifford Algebras and Geometry.- 30 Anticommuting Variables and Pseudo-classical Mechanics.- 31 Fermionic Quantization and Spinors.- 32 A Summary: Parallels Between Bosonic and Fermionic Quantization.- 33 Supersymmetry, Some Simple Examples.- 34 The Pauli Equation and the Dirac Operator.- 35 Lagrangian Methods and the Path Integral.- 36 Multi-particle Systems: Momentum Space Description.- 37 Multi-particle Systems and Field Quantization.- 38 Symmetries and Non-relativistic Quantum Fields.- 39 Quantization of Infinite dimensional Phase Spaces.- 40 Minkowski Space and the Lorentz Group.- 41 Representations of the Lorentz Group.- 42 The Poincaré Group and its Representations.- 43 The Klein-Gordon Equation and Scalar Quantum Fields.- 44 Symmetries and Relativistic Scalar Quantum Fields.- 45 U(1) Gauge Symmetry and Electromagnetic Field.- 46 Quantization of the Electromagnetic Field: the Photon.- 47 The Dirac Equation and Spin-1/2 Fields.- 48 An Introduction to the Standard Model.- 49 Further Topics.- A Conventions.- B Exercises.- Index.
· · · · · · (收起)

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有