譯者序
原書前言
第1章輸電網前沿技術集成的中期路綫圖
1.1輸電係統的演化
1.1.歐洲(或歐盟)
1.1.2美國
1.1.3全球電力係統未來的焦點
1.1.4歐洲案例:泛歐地區輸電網絡麵對的五大挑戰
1.1.5對2030年泛歐洲輸電係統的展望
1.2針對TSO的歐洲中期技術路綫圖
1.2.1技術集成路綫圖的適用範圍
1.2.2支持輸電係統的既定創新技術
1.2.3技術集成路綫圖的概述
1.2.4無源設備集成技術路綫圖
1.2.5有源設備技術集成路綫圖
1.2.6實時監控設備的技術集成路綫圖
1.3結論
參考文獻
第2章新型電纜
2.1輸電電纜的發展簡史
2.2技術綜述
2.2.1電纜的基本組成
2.2.2擠包絕緣電纜係統
2.2.3自容式充油電纜係統
2.2.4其他類型的電纜
2.2.5電氣參數
2.3擠包絕緣電纜交流輸電的可靠性及運行曆史
2.3.1輸電電纜的運行
2.3.2電纜安裝
2.4長距離輸電
2.4.1特高壓交流電纜的最大輸電距離
2.4.2對網絡的影響及並聯補償
2.5高壓直流輸電電纜
2.5.1粘性浸漬紙絕緣高壓直流電纜係統
2.5.2高壓直流擠包絕緣電纜
2.5.3其他類型的高壓直流輸電電纜
2.5.4陸地輸電用高壓直流電纜
2.5.5高壓直流輸電電纜的主要特性
2.6輸電電纜的電氣應力
2.6.1交流電纜的電氣應力
2.6.2直流電纜的電氣應力
2.6.3高壓直流電纜工程
2.7電纜對環境的影響
2.8電磁場
2.9電纜係統的投資成本
2.10其他革新技術
2.10.1超導電纜
2.10.2高溫超導電纜的設計
2.10.3高溫超導電纜的特點
2.11氣體絕緣綫路
參考文獻
第3章實時熱容評定係統
3.1實時熱容評定係統的背景
3.2技術綜述
3.2.1建立實時熱容評定係統的目的
3.3實時熱容評定係統與輸電係統運營商的運營
3.4高壓輸電綫路中設置實時熱容評定係統的益處
3.5有關實時熱容評定係統的說明
3.5.1分布式溫度傳感器的設計原則
3.6實時熱容評定係統中分布式溫度傳感器係統的應用
3.7動態實時熱容評定係統與僅采用分布式溫度傳感器的係統的比較
3.8實時熱容評定係統的實現
3.9係統檢驗的專用檢測電路
3.9.1電纜設計
3.9.2測試電路的供電
3.9.3測試電路的特性
3.9.4估算地麵熱阻率
3.9.5電阻測量值的確定
3.9.6額定電流的計算
3.9.7參數監測及傳感器
3.10係統功能
3.10.1係統描述數據庫
3.10.2數學模型
3.10.3人機界麵
3.10.4硬件要求
3.10.5現場輸入
3.10.6輸齣
3.10.7用戶的數據采集與監控設備直接輸入/輸齣
3.11分布式溫度傳感器的測量方法
3.11.1未受乾擾的地麵溫度
3.12實時數據庫
3.13數學計算
3.14圖形用戶界麵的特點
3.14.1圖形用戶界麵
3.14.2警報窗口
3.14.3數據的曆史變化趨勢
3.15測試結果
3.15.1電纜發熱
3.16運行經驗
3.17結論
參考文獻
第4章柔性交流輸電係統設備
4.1曆史和技術背景
4.2技術迴顧
4.2.1並聯控製器
4.2.2串聯控製器
4.2.3復閤控製器
4.2.4FACTS設備的可靠性和可用性
4.3FACTS設備的主要技術特徵總結
4.4經濟性和環境方麵
4.4.1簡介
4.4.2FACTS的經濟層麵分析
4.4.3FACTS對環境的影響
4.5FACTS在網狀電網中的整閤規劃
4.5.1FACTS在現代電力係統發展中的潛力
4.5.2傳輸擁塞緩解和提高容量
4.5.3FACTS應用實例
4.5.4未來趨勢
4.6總結
參考文獻
第5章高壓直流輸電
5.1簡要曆史背景和展望
5.2技術綜述
5.2.1電網換相CSC HVDC
5.2.2自換相VSC HVDC
5.2.3可靠性和可用性
5.2.4VSC HVDC嵌入同步電網的影響
5.2.5多端HVDC輸電
5.2.6遠距離電力傳輸
5.3經濟和環境方麵
5.3.1HVDC輸電設備的成本要素
5.3.2HVDC輸電綫路的環境影響
5.4精選至今仍在運行中的HVDC輸電項目
5.4.1歐洲的HVDC輸電項目
5.4.2美洲的HVDC輸電項目
5.4.3非洲的HVDC輸電項目
5.4.4亞洲的HVDC輸電項目
5.4.5總結和經驗教訓
5.5輸電網絡集成HVDC係統的規劃
5.5.1HVDC麵嚮現代電力係統發展的潛力
5.5.2輸電阻塞的減輕和容量的增加
5.5.3異步運行的電網間的耦閤
5.5.4海上風電場的連接
5.6結論
參考文獻
第6章電力潮流控製設備的協調方法
引言
6.1為什麼需要進行電力潮流設備的協調
6.2協調PST的現行技術途徑
6.2.1容量分配過程中PST的協調
6.2.2在TSO日前操作安全規劃中PST的協調性
6.2.3實時操作中PST的協調
6.2.4PST設備在北美的實時操作
6.3PFC設備協調控製的新方法
6.3.1關於PFC協調係統以前的工作
6.3.2對最新方法的分析
6.3.3未來協調方法的一般性討論
6.4總結
6.4.1容量分配
6.4.2日前安全計劃
6.4.3實時協調
參考文獻
第7章電能存儲:提高未來電力係統靈活性的新選擇
7.1未來的電力係統需要提高靈活性
7.2電能存儲的定義
7.3電能存儲在電網運行中的作用
7.3.1電能存儲在輸電係統中的作用
7.3.2電能存儲在配電係統中的作用
7.4歐洲未來儲能技術發展的推動力
7.5儲能技術在歐洲的應用及發展前景
7.5.1物理儲能
7.5.2電磁儲能和靜電儲能
7.5.3化學儲能
7.5.4蓄熱
7.6儲能在美國和日本的應用前景
7.6.1儲能在美國的應用前景
7.6.2儲能在日本的應用前景
7.7儲能技術的技術成熟度及成本
7.8儲能商業應用的效益前景
7.8.1孤島電力係統儲能
7.8.2英國蘇格蘭奧剋尼群島的電力儲能站
7.9結論
參考文獻
附錄
附錄A先進傳輸技術的術語解釋
A.1高溫超導(HTS)電纜
A.2氣體絕緣綫路(GIL)
A.3高溫導綫(HTC)
A.4移相變壓器(PST)
A.5基於實時熱評定(RTTR)的電纜/綫路
A.6廣域監測係統(WAMS)/同步相量測量單元(PMU)
A.7高壓直流輸電(HVDC)
A.8柔性交流輸電係統(FACTS)
A.9風力抽水蓄能及風機快速停機狀況下的電能供應
A.10壓縮空氣儲能(CAES)
A.11飛輪儲能(FES)
A.12超導磁儲能(SMES)
A.13鈉硫(NaS)電池
A.14液流體電池(功率/能量存儲)
A.15超級電容器(儲能)
A.16鋰離子電池
A.17故障限流器(FCL)
A.18新型輸電塔
附錄B參考文獻
B.1背景
B.2路綫圖和相關規範
B.3超導電纜
B.4PST
B.5基於RTTR的電纜和綫路
B.6GIL
B.7HTC
B.8WAMS/PMU
B.9HVDC
B.10FACTS
B.11儲能技術
B.12限流器
B.13新型輸電塔
關於作者
· · · · · · (
收起)