序
         自序
         分形几何介绍(只需要初等数学的知识)
         博士论文
         The Use of Fractional Brownian Motion in the Modelling of the Dispersion
         of Contaminants in Fluids
         Chapter 1: Outline of Project      1
         1.1 Introduction       1
         1.2 Fractal and Fractional Brownian Motion    1
         1.3 Aim and Objectives      2
         1.4 Structure of Thesis      3
         Chapter 2: Diffusion and Dispersion in Fluids
         -- A Literature Review     4
         2.1 Introduction       4
         2.2 Molecular Diffusion: Fick’s Law and the Diffusion
         Equation       5
         2.3 Statistical Theory of Diffusion: Brownian Motion  8
         2.4 Turbulent Diffusion      11
         2.4.1 Introduction      11
         2.4.2 Eddies       12
         2.4.3 Taylor’s Theorem     13
         2.4.4 The Relationship Between Lagrangian and
         Eulerian Measurement    15
         2.4.5 Relative Diffusion and Richardson’s Law  17
         2.4.6 Okubo’s Oceanic Diffusion Diagrams  19
         2.5 Shear Dispersion      22
         2.5.1 Introduction      22
         2.5.2 Taylor and Elder’s Shear Dispersion Results  22
         2.5.3 Dispersion in Rivers     24
         2.5.3.1 Dispersion in Uniform Depth Open Channel 25
         2.5.3.2 The Three-Dimensional Diffusion
         Coefficients in an Open Channel  28
         2.5.3.3 Dispersion in a Natural Channel  30   
         2.5.4 Dispersion in the Sea     31
         2.5.4.1 Introduction     31
         2.5.4.2 Relative Diffusion on the Ocean Surface 32
         2.5.4.3 Coastal Region    36
         2.6 Numerical Model of Dispersion    38
         2.6.1 Solution of the Advection-Diffusion Equation 38
         2.6.2 The Disadvantage of Solving the
         Advection-Diffusion Equation   40
         2.7 Particle Tracking Methods     42
         2.7.1 Traditional Particle Tracking Methods  42
         2.8 Summary       46
         Chapter 3 Brownian Motion, Fractional Brownian Motion
         and Fractal Geometry     47
         3.1 Brownian Motion      47   3.1.1 The Definition of Brownian Motion   47   3.1.2 Two Simple Random Walks    48   3.1.3 Brownian Motion Generation    51
         3.1.3.1 Central Limit Theorem Method  52
         3.1.3.2 The Box-Muller Method   53   3.1.4 The Properties of a One-Dimensional
         Brownian Motion Time Trace   54
         3.1.5 The Skewness and Kurtosis of Random Walks 57   3.1.6 Random Walks in Two Dimensions   59
         3.1.6.1 Delta Random Walks in Two Dimensions 60
         3.1.6.2 Constant Random Walks in Two
         Dimensions     60
         3.1.6.3 Brownian Motion in Two Dimensions 61   3.1.7 The Last Steps of the Random Walks in Two
         Dimensions      62
         3.2- Fractional Brownian Motion     63
         3.2.1 Introduction      63    3.2.1.1 Fractional Brownian Motion:
         A Generalisation of Brownian Motion 63
         3.2.1.2 Applications of Fractal Brownian Motion  64
         3.2.1.3 The Definition of Fractional Brownian
         Motion      67
         3.2.1.4 Properties of Fractional Brownain Motion 68    3.2.1.5 Methods for the Generation of Fractional
         Brownian Motion    70
         3.2.2 FBM Model      71   3.2.3 FBMINC Model     76   3.2.4 The Comparison of the FBM and FBMINC Models 80  
         3.2.5 fBm Plots in One Dimension    85    3.2.5.1 Fractional Random Walk Plots for the
         FBM Model     85
         3.2.5.2 The Effect of the Different Random
         Number Sequences    89    3.2.5.3 The Mean Absolute Separation of an
         fBm Trace     90   3.2.6 The Relationship Between M, NSTEP and P  92    3.2.6.1 Relationship Between NSTEP and M  92
         3.2.6.2 The Effect of the Number of Particles
         in a Diffusing Cloud    94
         3.2.6.3- A Check on Random Number Seeds  95   3.2.7 Fractional Brownian Motion in Two Dimensions 96
         3.2.8 Projection of Two-Dimensional Fractional Brownian
         Motion       98
         3.2.9 The Use of Simpler Probability Distributions to
         Reduce CPU Time     100
         3.2.10 Long Term Fickian Behaviour   104  3.3 fBm as a Random Fractal Function    106
         3.3.1 Fractal Geometry and Fractal Curves   106
         3.3.2 Fractal Dimension     109   3.3.3 Fractal Properties of fBm    110
         3.3.3.1 The Box Counting Dimension  111
         3.3.3.2 The Dimension of an fBm Trace  111
         3.3.3.3 The Dimension of fBm Trajectories  113
         3.3.4 Method for Determining H from Real Data  116
         3.4- Summary        121
         Chapter 4 Coastal Bay Modelling     122
         4.1 Introduction       122
         4.2 New Particle Tracking Method Using in the Bay  122
         4.2.1 Advection       123
         4.2.2 Diffusion      124
         4.2.2.1 Traditional Random Walk Model  124
         4.2.2.2 Diffusion Using Fractional Brownian
         Motion Model     125
         4.2.2.3 The New fBm Particle Tracking Model 127
         4.2.3 Choosing a Time Interval    128
         4.2.4 Choosing a Diffusion Coefficient   129
         4.2.5 Boundary Reflection     131
         4.2.5.1 important Note on FBM Reflection  133
         4.2.6 The Particle Tracking Model    133
         4.2.6.1 The Particle Tracking Algorithm  133   
         4.2.6.2 Typical Particle Trajectory Plots for the
         Bay Model     136
         4.2.7 Particles Clouds     137
         4.2.7.1 Computational Effort    137
         4.2.8 Concentration Calculation and Plots   139
         4.2.8.1 Algorithm for Calculation of Pollution
         Concentration     140
         4.2.8.2 Contour Plots and 3D Surface Plots  141
         4.2.9 Further Reported Results    142
         4.3 Shear Dispersion      143
         4.3.1 Simple Shear Dispersion (Brownian Motion)  144
         4.3.2 Shear Dispersion with Fractional Brownian Motion 147
         4.3.3 Shear Dispersion in the Coastal Bay Model
         Recirculation Zone     150
         4.4 Summary       153
         Chapter 5 Simulation of Observed Coastal Dispersion  189
         5.1 Introduction       189
         5.2 Northumbrian Coastal Water Data Sets   190
         5.3 Three Methods for Calculating the Standard Deviation of
         the Dye Patch Concentrations     191
         5.3.1 The SQ-Method     192
         5.3.2 The R-Method      193
         5.3.3 The SR-Method     194
         5.3.4 Estimation of the Direction of the Mean Advective
         Velocity Vector for Each Patch   194
         5.4 Comparison of the Three Methods    195
         5.4.1 The Reason for Introducing the SR-Method  195
         5.4.2 Comparison of the Results Using the Three
         Methods      196
         5.5 Accuracy of the Results     197
         5.5.1 The Sensitivity of the Centre    197
         5.5.2 The Concentration Function Calculation  198
         5.6 Simulation of the Observed Dye Patches Using an fBm
         Based Particle Tracking Model    198
         5.6.1 The Accelerated Fractional Brownian Motion
         (AFBM) Model     199
         5.6.2 Simulation Using the FBMINC and AFBM
         Models      202
         5.6.3 Concentration Calculations    202
         5.6.4 Contour Plots      203
         5.7 Summary       205  
         Chapter 6 Conclusions, Discussion and Recommendations  243
         6.1 Introduction       243
         6.2 Achievement of Objectives     243
         6.3 Discussion       247
         6.4 Recommendations for Future Work    249
         Appendix 1 FORTRAN 77 Programs     253
         References         293
         分形应用论文选
         1. 分数布朗运动的简化和应用       317
         2. 从分形维数到海洋表面漂浮物轨迹的模拟   328
         3. 流体中污染物扩散的分形模拟      335
         4. 用分数型布朗运动模拟海湾的剪切湍流分散   343
         5.  Development of FBMINC model for particle diffusion
         in fluids         354
         7 加速分数型布朗运动粒子追踪模型在水面污染扩散中的应用 387
      · · · · · ·     (
收起)