1 An Invitation to Compressive Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
         1.1 What is Compressive Sensing?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
         1.2 Applications, Motivations, and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 8
         1.3 Overview of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
         2 Sparse Solutions of Underdetermined Systems . . . . . . . . . . . . . . . . . . . . . . . . . 41
         2.1 Sparsity and Compressibility .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
         2.2 Minimal Number of Measurements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
         2.3 NP-Hardness of 0-Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
         3 Basic Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
         3.1 Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
         3.2 Greedy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
         3.3 Thresholding-BasedMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
         4 BasisPursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
         4.1 Null Space Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
         4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
         4.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
         4.4 Recovery of Individual Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
         4.5 The Projected Cross-Polytope .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
         4.6 Low-Rank Matrix Recovery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
         5 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
         5.1 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
         5.2 Matrices with Small Coherence .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
         5.3 Analysis of OrthogonalMatching Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . 123
         5.4 Analysis of Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
         5.5 Analysis of Thresholding Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
         6 Restricted Isometry Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
         6.1 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
         6.2 Analysis of Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
         6.3 Analysis of Thresholding Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
         6.4 Analysis of Greedy Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
         7 Basic Tools from Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
         7.1 Essentials from Probability .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
         7.2 Moments and Tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
         7.3 Cram´er’s Theorem and Hoeffding’s Inequality.. . . . . . . . . . . . . . . . . . . . 188
         7.4 Subgaussian Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
         7.5 Bernstein Inequalities .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
         8 Advanced Tools from Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
         8.1 Expectation of Norms of Gaussian Vectors. . . . . . . . . . . . . . . . . . . . . . . . . 202
         8.2 Rademacher Sums and Symmetrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
         8.3 Khintchine Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
         8.4 Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
         8.5 Noncommutative Bernstein Inequality.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
         8.6 Dudley’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
         8.7 Slepian’s and Gordon’s Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
         8.8 Concentration of Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
         8.9 Bernstein Inequality for Suprema of Empirical Processes . . . . . . . . . 247
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
         9 Sparse Recovery with Random Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
         9.1 Restricted Isometry Property for Subgaussian Matrices . . . . . . . . . . . 272
         9.2 Nonuniform Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
         9.3 Restricted Isometry Property for Gaussian Matrices . . . . . . . . . . . . . . . 291
         9.4 Null Space Property for Gaussian Matrices . . . . . . . . . . . . . . . . . . . . . . . . 293
         9.5 Relation to Johnson–Lindenstrauss Embeddings.. . . . . . . . . . . . . . . . . . 298
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
         10 GelfandWidths of 1-Balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
         10.1 Definitions and Relation to Compressive Sensing . . . . . . . . . . . . . . . . . 311
         10.2 Estimate for the GelfandWidths of 1-Balls . . . . . . . . . . . . . . . . . . . . . . . 317
         10.3 Applications to the Geometry of Banach Spaces . . . . . . . . . . . . . . . . . . . 322
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
         11 Instance Optimality and Quotient Property .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
         11.1 Uniform Instance Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
         11.2 Robustness and Quotient Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
         11.3 Quotient Property for Random Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
         11.4 Nonuniform Instance Optimality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
         12 Random Sampling in Bounded Orthonormal Systems . . . . . . . . . . . . . . . . . 367
         12.1 Bounded Orthonormal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
         12.2 Uncertainty Principles and Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 374
         12.3 Nonuniform Recovery: Random Sign Patterns . . . . . . . . . . . . . . . . . . . . . 384
         12.4 Nonuniform Recovery: Deterministic Sign Patterns . . . . . . . . . . . . . . . 392
         12.5 Restricted Isometry Property .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
         12.6 Discrete Bounded Orthonormal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
         12.7 Relation to the Λ1-Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
         13 Lossless Expanders in Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
         13.1 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
         13.2 Existence of Lossless Expanders .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
         13.3 Analysis of Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
         13.4 Analysis of an Iterative Thresholding Algorithm . . . . . . . . . . . . . . . . . . 447
         13.5 Analysis of a Simple Sublinear-Time Algorithm.. . . . . . . . . . . . . . . . . . 452
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
         14 Recovery of Random Signals using Deterministic Matrices . . . . . . . . . . . 459
         14.1 Conditioning of Random Submatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
         14.2 Sparse Recovery via 1-Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
         15 Algorithms for 1-Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
         15.1 The Homotopy Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
         15.2 Chambolle and Pock’s Primal-Dual Algorithm . . . . . . . . . . . . . . . . . . . . 481
         15.3 Iteratively Reweighted Least Squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
         Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
         Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
         Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
         A MatrixAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
         A.1 Vector and Matrix Norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
         A.2 The Singular Value Decomposition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
         A.3 Least Squares Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
         A.4 Vandermonde Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
         A.5 Matrix Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
         B ConvexAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
         B.1 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
         B.2 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
         B.3 The Convex Conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
         B.4 The Subdifferential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
         B.5 Convex Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
         B.6 Matrix Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
         C Miscellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
         C.1 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
         C.2 Covering Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
         C.3 The Gamma Function and Stirling’s Formula . . . . . . . . . . . . . . . . . . . . . . 577
         C.4 The Multinomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
         C.5 Some Elementary Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
         C.6 Estimates of Some Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
         C.7 Hahn–Banach Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
         C.8 Smoothing Lipschitz Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
         C.9 Weak and Distributional Derivatives .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
         C.10 Differential Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
         List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
         References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
         Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
      · · · · · ·     (
收起)