This text for advanced undergraduates emphasizes the logical connections of the subject. The derivations of formulas from the axioms do not make use of models of the hyperbolic plane until the axioms are shown to be categorical; the differential geometry of surfaces is developed far enough to establish its connections to the hyperbolic plane; and the axioms and proofs use the properties of the real number system to avoid the tedium of a completely synthetic approach. The development includes properties of the isometry group of the hyperbolic plane, tilings, and applications to special relativity. Elementary techniques from complex analysis, matrix theory, and group theory are used, and some mathematical sophistication on the part of students is thus required, but a formal course in these topics is not a prerequisite.
評分
評分
評分
評分
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有