复变函数学习辅导

复变函数学习辅导 pdf epub mobi txt 电子书 下载 2026

出版者:
作者:
出品人:
页数:159
译者:
出版时间:2005-7
价格:8.00元
装帧:
isbn号码:9787560615431
丛书系列:
图书标签:
  • 复变函数
  • 复变函数
  • 数学分析
  • 高等数学
  • 学习辅导
  • 教材
  • 复变函数论
  • 函数论
  • 数学
  • 理工科
  • 考研
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

复变函数是理工科大学生的一门重要基础课,为了帮助初学者在较短的时间里学好这门课程,我们编写了这本小册子.全书共六章,每章由“基本要求”、“疑难解析”、“范例精解”和“习题选解”四部分组成.书末还附有两套模拟试题及答案。

本书可以作为非数学类专业的理工科大学生学习复变函数课程的辅导资料,也可供教师参考。

《数学的深度之境:从实数到无穷的探索》 本书并非一本具体的数学教材,而是一场关于数学思想深邃之处的漫游。它将带领读者穿越数学的宏伟大厦,从最基础的实数概念出发,逐步触及那些塑造了现代科学与工程的抽象理论。我们将一同领略数字的内在结构,探索函数的丰富表现力,并最终抵达那引人遐想的无穷世界。 第一站:实数之基石 我们从人类对数量最朴素的理解——实数——开始。这里,我们不会停留于简单的加减乘除,而是深入探究实数集合的完备性,理解为何我们能够无缝地连接数轴上的每一个点。我们将探讨实数集合的各种性质,例如稠密性、不可数性,这些看似抽象的概念,实则是构建更复杂数学体系的坚实地基。通过对实数性质的深刻理解,读者将能更好地把握微积分等连续性数学的根基。 第二站:函数的万千姿态 函数,是描述变量之间关系的数学语言,也是连接现实世界与抽象数学的桥梁。本书将不仅仅罗列常见的函数类型,而是着重于揭示函数背后蕴含的深刻思想。我们将探讨函数的单调性、奇偶性、周期性等基本属性,并进一步深入研究函数的连续性与可导性。理解这些性质,意味着掌握了分析事物变化规律的关键工具。我们还将窥探函数的图像如何反映其内在的数学美,以及如何通过函数来建模现实世界中的各种现象,从物理运动到经济波动。 第三站:极限的边界与延伸 极限,是微积分的核心概念,它允许我们“逼近”一个值,而无需真正到达。本书将循序渐进地阐释极限的严谨定义,理解“趋近”的微妙含义。我们将探索数列的极限,函数的极限,以及极限在分析函数行为中的重要作用。理解极限,就是掌握了理解事物变化趋势,探究事物在极端状态下行为的关键。这包括了对无穷小的精妙运用,以及对函数在趋向无穷时表现的深刻洞察。 第四站:微积分的魔力:变化与累积 导数与积分,是微积分的两大支柱,它们分别描述了事物的瞬时变化率以及累积效应。本书将详细解读导数的几何意义——切线的斜率,以及其在优化问题中的应用。读者将学会如何通过导数来寻找函数的最大值与最小值,理解事物发展的速率。接着,我们将探讨积分的几何意义——曲线下的面积,以及它在计算体积、功等物理量中的强大能力。通过理解导数与积分的互逆关系,我们将洞悉事物从局部变化到整体累积的深刻联系。 第五站:序列与级数的无穷游戏 当我们将事物的变化无限地细分,我们便会遇到序列与级数。本书将引导读者理解无穷序列的收敛与发散,以及无穷级数的求和。这将打开一个充满惊喜的数学世界,其中许多看似不可能的计算,都能通过级数的巧妙运用而得以实现。读者将了解到,许多复杂的函数,都可以表示为无穷级数的形式,这为函数分析提供了更强大的武器。 第六站:空间中的几何洞察 我们将视角从一维的数轴和二维的平面,拓展到多维的空间。在这里,我们将探讨向量及其运算,理解空间中的方向与大小。我们将接触到空间曲线与曲面的方程,并学习如何用数学语言描述三维世界的形态。这将有助于读者理解物理世界中的轨迹、场等概念,为理解更高级的数学分支打下基础。 第七站:拓扑学的奇妙变换 拓扑学,是研究空间在连续变形下不变性质的学科。在这里,我们将告别度量,转而关注形状的本质。本书将引入一些有趣的拓扑概念,例如连通性、同胚等,并探讨一些著名的拓扑问题,如柯尼斯堡七桥问题。通过理解拓扑学的思想,读者将能以全新的视角审视空间,发现隐藏在看似不同事物之间的内在联系。 本书的独特性 《数学的深度之境:从实数到无穷的探索》并非提供一套现成的解题技巧,而是致力于培养读者对数学本质的深刻理解。它强调的是数学思想的逻辑性、抽象性以及它在解决实际问题时的普适性。本书将通过清晰的阐释、形象的比喻以及循序渐进的引导,帮助读者建立起扎实的数学思维体系,为进一步深入学习更高级的数学领域,乃至理解科学前沿的理论打下坚实的基础。它鼓励读者主动思考,勇于探索,在数学的无限海洋中,找到属于自己的那片深邃之境。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

这本书的语言风格我个人非常欣赏,它带着一种特有的、沉稳而又富有激情的学者气质。作者的表达非常凝练,用词精准,几乎没有出现任何可以被精简的冗余词句,每一句话都仿佛经过了反复的掂量和打磨。然而,这种严谨并不意味着枯燥,相反,在讲解那些抽象的概念时,作者会穿插一些非常形象的比喻和生活化的类比,这些“引子”极大地降低了理解门槛,使得那些原本令人望而生畏的数学实体变得可以触摸和感知。这种在严谨和通俗之间找到的完美平衡,使得这本书既能满足专业人士的学术要求,也对初学者表现出了极大的友好和包容。读起来,感觉就像是听一位经验极其丰富的大师在娓娓道来,充满了智慧的火花。

评分

这本书的实用性体现在它对学习路径的清晰规划上,它不仅仅是一本教材或参考书,更像是一份详尽的学习指南。作者似乎非常了解学习者在不同阶段可能遇到的困难和瓶颈,因此在章节的编排上,处处体现了“以学习者为中心”的设计理念。每一个重要概念的提出,都会紧随其后的是一系列精心设计的练习题或思考题,这些题目并非简单的重复计算,而是巧妙地考察了对前述理论的灵活运用能力。更妙的是,对于一些难度较大的问题,书后附带的解答部分做得极其详尽,它不仅给出了最终答案,更重要的是,它详细剖析了得出该答案所依据的推理链条和潜在的陷阱,这种“解题思维”的传授,远比直接给出答案更有价值,它真正教会了读者如何去思考和解决问题。

评分

这本书的排版实在令人眼前一亮,装帧设计充满了复古的韵味,尤其是那种微微泛黄的纸张触感,让人仿佛回到了手抄笔记的时代。装帧的硬度适中,拿在手里既有分量感,又不会觉得笨重。内页的字体选择非常考究,宋体和楷体的结合恰到好处,既保证了阅读的舒适度,又在关键的数学公式和定理推导部分使用了清晰的衬线字体,使得重点一目了然。装帧的侧边在书脊处做了精致的烫金处理,虽然内容本身不涉及这方面,但光是摆在书架上,它就已经是一件艺术品了。而且,书中的插图或示意图虽然是黑白线条为主,但线条的粗细和疏密安排得极为巧妙,即便是复杂的几何图形也能被清晰地勾勒出来,体现了设计者在视觉传达上的高超水准。这种对细节的极致追求,让阅读过程本身变成了一种享受,而不是简单的信息获取过程。

评分

这本书的理论深度和广度令人印象深刻,它不仅仅是内容的堆砌,更像是一场精心策划的学术漫步。作者在选取和组织材料时,明显投入了极大的心血,构建了一个非常逻辑自洽的知识体系。从基础的概念引入,到深入探讨一些前沿的研究方向,层次过渡得非常自然,没有丝毫的突兀感。特别是对于一些经典定理的阐述,作者并没有满足于给出标准化的证明过程,而是常常会提供多种不同的证明思路,这极大地拓展了读者的思维边界,让人在理解一个结论的同时,也能领略到数学思想的多元性。这种不满足于表面、力求深挖内核的写作风格,非常适合那些渴望真正掌握学科精髓的进阶学习者,它提供的知识密度之高,可能需要反复研读才能完全消化,但每一次重读都能带来新的启发和感悟。

评分

这本书在知识的覆盖范围和历史脉络的梳理上也做得相当出色,它没有孤立地呈现数学知识,而是将其置于一个更宏大的学术背景之下进行考察。在论述某些关键理论的诞生和发展时,作者简要回顾了相关的历史背景和主要学者的贡献,这使得冰冷的公式背后有了人性的温度和思想交锋的张力。通过这种方式,读者不仅掌握了“是什么”,更理解了“为什么会是这样”以及“它是如何一步步演变而来的”。这种纵向的历史梳理和横向的学科联系的构建,极大地增强了对所学知识的整体把握感。它让读者意识到,数学的发展是一个不断迭代、充满探索与突破的动态过程,而不是一堆静止不变的教条,这种全景式的视野对于培养成熟的数学思维至关重要。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有