動力係統導論

動力係統導論 pdf epub mobi txt 電子書 下載2025

出版者:機械工業齣版社
作者:[美] R.Clark Robinson
出品人:
頁數:652
译者:
出版時間:2005-5
價格:65.00元
裝幀:簡裝本
isbn號碼:9787111159131
叢書系列:經典原版書庫
圖書標籤:
  • 數學
  • 科學
  • 動力係統
  • 其餘方程7
  • 動力係統
  • 非綫性動力學
  • 混沌
  • 數學建模
  • 控製理論
  • 微分方程
  • 物理學
  • 工程學
  • 應用數學
  • 係統分析
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

動力係統是非綫性科學的重要組成部分,目前已在數學、統計學、物理學、信息與計算科學等領域得到瞭廣泛的應用。本書概括地介紹瞭動力係統的基礎理論知識與基本研究方法。全書分為兩部分:第一部分主要介紹非綫性常微分方程的各個方麵,包括微分方程的幾何解法、非綫性方程的流函數解、綫性係統、混沌現象和周期軌道等;第二部分主要介紹與疊函數有關的內容,包括動力係統中的函數、一維映射的周期點、一維映射的不變集、高維映射的周期點、高維映射的不變集、分形動力係統等。書中每一章的內容均按照“基本概念+應用+定理與證明+習題”的形式組織,有條不紊,十分適閤於教學使用。

本書既可作為高等院校相關專業的教材,又可供專門從事動力係統理論研究的學者和工程技術人員參考。

著者簡介

R.Clark Robinson,擁有加州大學伯剋利分校博士學位,現為美國西北大學數學係教授。除本書外,他還著有《Dynamical Systems:Stability,Symbolie Dynamics,and Chaos》一書。

圖書目錄

historical prologue
part 1.systems of nonlinear differential equations
chapter 1.geometric approach to differential equations
chapter 2.linear systems
2.1.fundamental set of solutions
2.2. constant coefficients:solutions and phase portraits
2.2.1. complex eigenvalues
2.2.2. repeated real eigenvalues
2.2.3.quasiperiodic systems
2.3.nonhomogeneous systems:time-dependent forcing
2.4. applications
2.4.1.mixing fluids
2.4.2. model for malignant tumors
2.4.3.detection of diabetes
2.4.4. electric circuits
2.5.theory and proofs
exercises for chapter 2
chapter 3.the flow:solutions of nonlinear equations
3.1. solutions of nonlinear equations
3.1.1. solutions in multiple dimensions
.3.2. numerical solutions of differential equations
3.2.1. numerical methods in multiple dimensions
3.3.theory andproofs
exercises for chapter 3
chapter 4.phase portraits with emphasis on fixed points
4.1. stability of fixed points
4.2. one.dimensional difierential equations
4.3.two dimensions and nullclines
4.4.linearized stability of fixed points
4.5. competitive populations
4.5.1.three competitive populations
4.6. applications
4.6.1. chemostats
4.6.2. epidemic model
4.7.theory and proofs
exercises for chapter 4
chapter 5.phase portraits using energy and other test functions
5.1.predator-prey systems
5.2.undamped forces
5.3.lyapunov functions for damped systems
5.4.limit sets
5.5. gradient systems
5.6. applications
5.6.1. nonlinear oscillators
5.6.2.neural networks
5.7.111eory and proofs
exercises for chapter 5
chapter 6.periodic orbits
6.1.definitions and examples
6.2.poincare-bendixson theorem
6.2.1. chemical reaction model
6.3. self-excited oscillator
6.4. andronov-hopfbifurcation
6.5.homoclinic bifurcation to a periodic orbit
6.6. change of area or volume by the flow
6.7. stability of periodic orbits and the poincard map
6.8. applications
6.8.1. chemical oscillation
6.8.2. nonlinear electric circuit
6.8.3.predator-prey system with all andronov-hopf bifurcation
6.9.theory and proofs
exercises for chapter 6
chapter 7. chaotic attractors
7.1. attractors
7.2. chaos
7.2.1.sensitive dependence
7.2.2. chaotic attractors
7.3.lorenz system
7.3.1.fixed points for lorenz equations
7.3.2.poincar6 map of lorenz equations
7.4. r6ssler attractor
7.4.1. cantor sets and attractors
7.5.forced oscillator
7.6.lyapunov exponents
7.6.1.numerical calculation of lyapunov exponents
7.7. a test for chaotic attractors
7.8. applications
7.8.1.lorenz system as a model
7.9.theory and proofs
exercises for chapter 7
part 2.iteration of functions
chapter 8. iteration of functions as dynamics
8.1.one.dimensional maps
8.2.functions with several variables
chapter 9.periodic points of one-dimensional maps
9.1.periodic points
9.2. graphical method of i~raton
9.3. stability of periodic points
9.3.1. newton map
9.3.2.fixed and period.2 points for the logistic family
9.4.periodic sinks and schwarzian derivative
9.5.bifurcation of periodic points
9.5.1.the bifurcation diagram for the logistic family
9.6.conjugacy
9.7.applications
9.7.1.capital accumulation
9.7.2.single populmion models
9.7.3.blood cell population model
9.8.theory and proofs
exercises for chapter 9
chapter 10.itineraries for 0he-dimensional maps
10.1.periodic points from transition graphs
10.1.1.sharkovskii theorem
10.2.topological transitivity
10.3. sequences of symbols
10.4. sensitive dependence on initial conditions
10.5.cantor sets
10.6.subshifts:piecewise expanding interval maps
10.6.1.counting periodic points for subshifts of finite type
10.7. applications
10.7.1. newton map:nonconvergent orbits
10.7.2. complicated dynamics for populmion growth models
10.8.thetry and proofs
exercises for chapter l o
chapter 11. invariant sets for olie.dimensional maps
11.1.limit sets
11.2. chaotic attractors
11.2.1.chaotic attractors for expanding maps with discontinuities
11.3.lvapunov exponents
11.3.1.a test for chattie attractors
11.4.measures
11.4.1. general properties of measures
11.4.2.frequency measures
11.4.3.invariant measures for expanding maps
11.5. applications
11.5.1. capital accumulation
11.5.2. chaotic blood cell population
11.6.theory and proofs
exercises for chapter 11
chapter 12.periodic points of higher dimensional maps
12.1.dynamics of linear maps
12.2. stability and classification of periodic points
12.3. stable manifolds
12.3.1.numerical calculation ofthe stable manifold
12.3.2. basin boundaries
12.3.3. stable manifolds in higher dimension
12.4.hyperbolic toral automorphisms
12.5. applications
12.5.1.markov chains
12.5.2. newton map in r”
12.5.3. beetle population model
12.5.4. a discrete epidemic model
12.5.5.one-locus genetic model
1 2.6.theory and proofs
exercises for chapter 12
chapter 13.invariant sets for higher dimensional maps
13.1.geometric horseshoe
13.1.1. basin boundafies
13.2. symbolic dynamics
13.2.1.correctly aligned rectangle
13.2.2.markov partition
13.2.3.markov partitions for hyperbolic toral automorphisms
13.2.4.shadowing
13.3.homoclinic points and horseshoes
13.4. attractors
13.4.1. chaotic attractors
13.5.lyapunov exponents for maps in higher dimensions
13.5.1.lyapunov exponents from axes of ellipsoids
13.5.2.numerical calculation of lyapunov exponents
13.6. a test for chaotic attractors
13.7.applications
13.7.1. stability ofthe solar system
13.8.theory and proofs
exercises for chapter 13
chapter 14. fractals
14.1. box dimension
14.2.dimensions of orbits
14.2.1. c0rrelation dimension
14.2.2.lyapunov dimension
14.3. iterated.function systems
14.3.1. iterated—function systems acting on sets
14.3.2.probabilistic action of iterated—function systems
14.3.3.determining the iterated—function system
14.4.theory and proofs
exercises for chapter 14
appendix a.calculus background and notation
appendix b.analysis and topology terminology
appendix c.matrix algebra
appendix d.generic properties
bibliography
index
· · · · · · (收起)

讀後感

評分

評分

評分

評分

評分

用戶評價

评分

评分

评分

评分

评分

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有