巧学数学  初中数学能力训练

巧学数学 初中数学能力训练 pdf epub mobi txt 电子书 下载 2026

出版者:上海远东出版社
作者:吴沈泉
出品人:
页数:409
译者:
出版时间:2003-4
价格:19.8
装帧:平装
isbn号码:9787806616574
丛书系列:
图书标签:
  • 初中数学
  • 数学练习
  • 能力训练
  • 同步辅导
  • 教材配套
  • 应试
  • 学习辅导
  • 解题技巧
  • 基础知识
  • 培优练习
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

探秘未知疆域:高中物理奥秘与前沿探索 图书名称: 进阶物理:从经典力学到量子世界 图书简介: 本书旨在为对自然科学抱有浓厚兴趣、已具备扎实初中基础知识的读者提供一座通往高中乃至大学物理学殿堂的坚实桥梁。我们深知,理解宇宙运行的底层逻辑,需要系统而深入的知识构建,而非零散的碎片信息。《进阶物理:从经典力学到量子世界》正是基于此信念而精心编撰的,它不仅是对传统高中物理知识体系的全面梳理和深化,更是一次对现代物理学前沿领域的初步触及与探索。 全书结构严谨,内容涵盖了物理学的核心支柱——力学、电磁学、热学、光学以及原子与核物理等关键领域,并辅以大量与现实世界紧密结合的实例分析,力求将抽象的物理定律转化为可感知的现象。 第一部分:宏观世界的基石——经典力学深度解析 经典力学是理解我们日常生活中物体运动规律的基石。本书将从运动学的基本概念出发,精确定义位移、速度与加速度,重点解析瞬时速度和加速度的数学表达,为后续更复杂的分析打下基础。 在牛顿运动定律的章节中,我们将超越简单的受力分析,深入探讨惯性系与非惯性系的概念,特别是在旋转参考系中引入惯性力(如科里奥利力与离心力)的实际应用,这对于理解天气系统、航天器的轨道修正至关重要。动量和能量的概念贯穿始终,我们将详细剖析动量守恒定律在碰撞问题中的普适性,并着重讲解机械能守恒的条件与边界。功是能量转化的核心度量,我们不仅讨论恒力做功,更会引入变力做功的计算方法,预示着微积分思想在物理问题解决中的威力。 此外,转动定律和角动量是理解复杂机械运动的关键。我们将深入探讨力矩的概念、刚体的平衡条件以及角动量守恒定律,这在陀螺仪的稳定、行星的运行轨道等问题中扮演着核心角色。对振动与波动的研究,将引导读者从简谐运动的周期性中,理解自然界中普遍存在的周期性现象,并过渡到机械波的传播特性,如波速、波长、干涉与衍射现象。 第二部分:能量的转换与守恒——热学与电磁场的交汇 热学部分,我们将从微观角度审视物质的形态。气体动理论将分子热运动与宏观热现象联系起来,详细阐述理想气体的状态方程及其推导过程,并探究内能、热量与功之间的关系,重点聚焦热力学第一定律。第二定律的引入,将揭示能量转换的方向性,熵的概念虽然抽象,但我们将通过实例展示其在自发过程中的重要性。 电磁学是本书的重点和难点之一。我们将从电荷的性质和库仑定律开始,逐步构建起静电场和静磁场的理论框架。高斯定理和安培环路定理的引入,极大地简化了对称情况下的场强计算。电势的概念将帮助我们更直观地理解电场做功。 电流的磁效应、电磁感应现象(法拉第定律)的深入探讨,将揭示电与磁的内在联系。本书将详细剖析电磁场理论的核心——麦克斯韦方程组的意义(侧重于其物理内涵而非严格的矢量微积分形式),并引出电磁波的存在性及其性质,包括电磁波谱的构成。 第三部分:光的本质与信息传递——光学与波动性 几何光学部分将作为工程应用的基础,详细讲解光的反射、折射定律、成像原理(透镜成像、光学仪器的构造)。但本书的重心在于波动光学。光的干涉和衍射现象是证明光具有波动性的有力证据,我们将详细分析双缝干涉和单缝衍射的条纹特点,以及光的偏振现象。 在过渡章节,我们将简要回顾光电效应和康普顿散射实验,这些实验证据无可辩驳地指向了光的粒子性,为进入微观世界做好了知识上的铺垫。 第四部分:微观世界的奇异性——原子结构与量子现象初探 本部分是通往现代物理学的门户。我们将追溯卢瑟福的原子核式结构模型,并引入玻尔模型来解释氢原子光谱的规律,理解能级的概念。这个概念的引入,是对经典物理学的一次根本性挑战。 量子世界的奇异性在于其不确定性。我们将介绍德布罗意波长,阐明微观粒子(如电子)同时具有的波动性与粒子性。海森堡不确定性原理将告诉我们,在微观尺度上,测量行为本身对客体产生了不可避免的干扰。最后,我们将展望原子核的结构、核反应(裂变与聚变)的巨大能量来源,以及基本的粒子物理概念,为读者打开一扇了解宇宙最基本构成和未来能源方向的窗户。 学习体验与特色: 本书的编写注重逻辑的连贯性和思维的启发性。每章均设有“回顾与提升”环节,通过一系列涵盖不同知识点、难度递增的思考题和计算题,帮助学习者检验和巩固所学。书中穿插了“物理学家的思想实验”栏目,介绍如伽利略的理想斜面实验、麦克斯韦的妖精等经典思想实验,旨在培养读者独立思考和批判性分析问题的能力。我们力求用清晰、精确的语言,将复杂的物理概念融入生动的历史背景和前沿应用中,确保读者在掌握“如何计算”的同时,更能理解“为什么这样”。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

我最近接触了一本关于**《数论的奇妙之旅》**的书籍,它完全刷新了我对数字世界底层逻辑的认知。这本书的风格非常古朴而深邃,仿佛在带领读者穿越回古希腊的学园,去探索那些最原始的数学真理。它从最简单的质数开始,循序渐进地探讨了素数的分布规律、同余理论,以及费马大定理背后的历史故事。作者在叙述大数定理的证明思路时,虽然没有给出繁复的代数推导,但却把逻辑链条梳理得极其清晰,让人能够把握住证明的核心思想——这是很多教材所欠缺的。书中穿插了许多历史典故,比如毕达哥拉斯学派对数字的崇拜,以及历史上数学家们为解决一个数论问题所付出的不懈努力,这极大地增强了阅读的趣味性和代入感。阅读这本书的过程,就像是在解一系列精妙的古代密码,每解开一个,就对人类智慧的深度多一份敬畏。它让你明白,即使是最基础的加减乘除,其背后也隐藏着无穷无尽的奥秘和结构。这本书让我重新爱上了那种纯粹的、不为任何应用目的而存在的数学之美。

评分

最近刚拜读了**《函数与图像:动态世界的映射》**,这本书简直是为那些觉得函数图像是“空中楼阁”的读者量身定制的。这本书最精彩的地方在于它极度强调“动态”和“变化”。它不满足于静态地展示 $y=x^2$ 的抛物线,而是用大量的动画描述(尽管是文字描述的动画感),讲解了当参数 $a$ 改变时,函数图像是如何平移、拉伸和翻转的。这种“拖拽式”的学习体验,让抽象的函数表达式变得有血有肉起来。作者在讲解三角函数时,巧妙地引入了圆周运动和简谐振动的概念,将三角函数从一个单纯的几何比值,提升到了描述周期性现象的物理语言层面。这本书的语言风格非常活跃,充满了类比和比喻,比如将复合函数比作流水线上的多重加工过程,非常形象易懂。它让我深刻理解到,函数就是刻画世界万物之间相互依存和变化关系的终极工具。对于那些想从“死记硬背公式”跃升到“理解变化本质”的同学来说,这本书绝对是必备良药。

评分

哇,我最近淘到一本**《几何的魔力》**,简直是打开了我对空间想象力的新大门!这本书不是那种枯燥的公式堆砌,而是充满了趣味性的几何谜题和富有启发性的插图。作者似乎非常懂得初学者的困惑点,总能在关键时刻用一个巧妙的例子来点亮思路。比如,它讲解欧拉公式时,不是直接抛出 $V-E+F=2$,而是通过搭建各种多面体模型,引导我们自己去发现这个隐藏的规律。我记得有一章专门讲“黄金分割”在自然界和艺术中的应用,那一段写得特别生动,让我感觉数学不再是冰冷的数字,而是与我们生活息息相关的、充满美感的秩序。书中的例题设计得也非常巧妙,难度梯度设置得非常合理,从基础的平面图形推理到复杂的立体空间剖析,每一步都让人感觉是在攀登一座知识的高峰,每登上一级,视野就开阔一分。最棒的是,这本书的排版非常清晰,图文并茂,即便是像我这种曾经被几何困扰多年的“老学生”,也能轻松跟上作者的思路,并且从中获得了巨大的成就感。强烈推荐给所有想真正理解几何内在美的朋友们!

评分

我必须得提一下这本**《概率与统计的直觉构建》**,它简直是拯救了我对概率论的恐惧!我以前总觉得概率就是掷骰子、抽扑克牌,充满了随机性和不确定性,很难把握。但这本书却用极其生活化的例子,比如交通流量的波动、市场调查的数据分析,来引入那些看似高深的概率模型。作者的叙事节奏把握得非常好,不会一开始就用复杂的公式吓退读者。比如,在讲解“大数定律”时,他不是直接引用数学证明,而是通过模拟成千上万次的抛硬币实验,展示出频率如何逐渐趋近于理论概率的过程,那种直观的冲击力是任何公式都无法替代的。更让我印象深刻的是它对“贝叶斯定理”的讲解,将先验信息和新证据结合起来修正判断的过程描述得丝丝入扣,让我明白了为什么统计学家总是强调“证据”的重要性。这本书的价值在于,它教会的不是如何计算一个概率值,而是如何用一种更科学、更理性、更少偏见的方式去看待生活中的不确定性。读完后,感觉自己看新闻报道时的批判性思维都提高了不少。

评分

最近沉迷于一本名为**《代数思维的精进之路》**的书籍,它完全颠覆了我对传统代数学习的认知。这本书的核心在于“思维训练”,而不是简单的解题技巧速成。它花了大量篇幅去探讨“为什么”要用某种方法,比如,它详细对比了配方法、求根公式推导和图像法在求解二次方程时的逻辑差异,让我对这些工具的适用场景有了前所未有的清晰认识。这本书的叙述风格非常像一位经验丰富的导师在耳边耐心讲解,语气平和却充满力量。它会不断地抛出一些开放性的问题,比如“当变量的范围从实数扩展到复数时,方程的解集会发生怎样的本质变化?”,引导读者主动去探索背后的数学原理。书中对于函数的概念的阐述尤其深刻,它不仅仅是把函数当作一个计算工具,而是将其视为描述事物之间依赖关系的一种强大的语言。读完关于不等式和绝对值的部分,我感觉自己看问题的角度都变得更加精确和严谨了。这本书需要静下心来慢慢品味,但每一次深入阅读,都会有“原来如此”的顿悟感。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有