Ordinary Differential Equations

Ordinary Differential Equations pdf epub mobi txt 電子書 下載2025

出版者:Springer
作者:William Adkins
出品人:
頁數:816
译者:
出版時間:2012-7-1
價格:GBP 53.99
裝幀:Hardcover
isbn號碼:9781461436171
叢書系列:Undergraduate Texts in Mathematics
圖書標籤:
  • 計算機科學
  • 數學
  • 我為數學狂!
  • UTM
  • Springer
  • Ordinary
  • ODE
  • Equations
  • 常微分方程
  • 微分方程
  • 數學
  • 高等數學
  • 工程數學
  • 數值分析
  • 數學分析
  • 應用數學
  • 科學計算
  • 數學建模
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.

著者簡介

William A. Adkins and Mark G. Davidson are currently professors of mathematics at Louisiana State University.

圖書目錄

First Order Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 An Introduction to Differential Equations . . . . . . . . . . . . . . . . . . 7
1.2 Direction Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Separable Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4 Linear First Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.5 Substitutions; Homogeneous and Bernoulli Equations . . . . . . . . 59
1.6 Exact Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.7 Existence and Uniqueness Theorems . . . . . . . . . . . . . . . . . . . . . . . 71
2 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.1 Definitions, Basic Formulas, and Principles . . . . . . . . . . . . . . . . . 90
2.2 Partial Fractions: A Recursive Method for Linear Terms . . . . . . 107
2.3 Partial Fractions: A Recursive Method for Irreducible
Quadratics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.4 Laplace Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.5 Exponential Polynomials and Laplace Transform
Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
2.6 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2.7 Laplace Inversion involving Irreducible Quadratics** . . . . . . . . . 157
2.8 Table of Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
2.9 Table of Convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3 Second Order Constant Coefficient Linear Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.1 The Laplace Transform Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.2 Consequences of Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
3.3 Linear Homogeneous Differential Equations . . . . . . . . . . . . . . . . . 184
3.4 The Method of Undetermined Coefficients . . . . . . . . . . . . . . . . . . 188
3.5 The Incomplete Partial Fraction Method . . . . . . . . . . . . . . . . . . . 195
3.6 Spring Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4 Contents
4 Second Order Linear Differential Equations . . . . . . . . . . . . . . . . 213
4.1 The Existence and Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . 214
4.2 The Homogeneous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4.3 The Cauchy-Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
4.4 Laplace Transform Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.5 Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
4.6 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
5 Laplace Transform II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
5.1 Calculus of Discontinuous Functions . . . . . . . . . . . . . . . . . . . . . . . 252
5.2 The Heaviside class ℋ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
5.3 Laplace Transform Method for f(t) ∈ ℋ . . . . . . . . . . . . . . . . . . . . 277
5.4 The Dirac Delta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
5.5 Impulse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
5.6 Periodic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
5.7 Undamped Motion with Periodic Input . . . . . . . . . . . . . . . . . . . . . 308
5.8 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
6 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
6.1 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
6.2 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
6.3 Invertible Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
6.4 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
7 Linear Systems of Differential Equations . . . . . . . . . . . . . . . . . . . 365
7.1 Linear Systems of Differential Equations . . . . . . . . . . . . . . . . . . . . 367
7.2 The Laplace Transform Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
7.3 The Matrix Exponential and its Computation . . . . . . . . . . . . . . . 390
A APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
A.1 The Laplace Transform is Injective . . . . . . . . . . . . . . . . . . . . . . . . 403
A.2 The Linear Independence of ℬq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
B Selected Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
C Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
· · · · · · (收起)

讀後感

評分

評分

評分

評分

評分

用戶評價

评分

講真 高數還是國內教材好

评分

講真 高數還是國內教材好

评分

講真 高數還是國內教材好

评分

講真 高數還是國內教材好

评分

講真 高數還是國內教材好

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有